Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Résultat majeur
Production scientifique
Résultat majeur : NON-CONSERVATIVE EXTENSION OF A PEER IN A P2P INFERENCE SYSTEM
NON-CONSERVATIVE EXTENSION OF A PEER IN A P2P INFERENCE SYSTEM
01 décembre 2009

Nada Abdallah and François Goasdoué. AI Communications (AICOM), 2009.
This paper points out that the notion of non-conservative extension of a knowledge base (KB) is important to the distributed logical setting of peer-to-peer inference systems (P2PIS), a.k.a. peer-to-peer semantic systems. It is useful to a peer in order to detect/prevent that a P2PIS corrupts (part of) its knowledge or to learn more about its own application domain from the P2PIS. That notion is all the more important since it has connections with the privacy of a peer within a P2PIS and with the quality of service provided by a P2PIS. We therefore study the following tightly related problems from both the theoretical and decentralized algorithmic perspectives: (i) deciding whether a P2PIS is a conservative extension of a given peer and (ii) computing the witnesses to the corruption of a given peer's KB within a P2PIS so that we can forbid it. We consider here scalable P2PISs that have already proved useful to Artificial Intelligence and DataBases.



Activités de recherche
  ° Intelligence Artificielle
  ° Démonstration automatique
  ° Logique
  ° Pair à Pair

Equipe
  ° Intelligence Artificielle et Systèmes d'Inférence

Contact
  [aucun]
Résultats majeurs
HOW FAST CAN YOU CONVERGE TOWARDS A CONSENSUS VALUE?
28 octobre 2021
In their recent work, Matthias Fuegger (LMF), Thomas Nowak (LISN), and Manfred Schwarz (TU Wien) stu

MODEL TRANSFORMATION AS CONSERVATIVE THEORY-TRANSFORMATION
30 octobre 2020
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the

BEST STUDENT PAPER AWARD (ML) AT ECML 2019
20 septembre 2019
Guillaume Doquet (A&O), Best Student Paper Award (category Machine Learning) at ECML 2019.

BEST PAPER AWARD - HPCS 2019 - ON SERVER-SIDE FILE ACCESS PATTERN MATCHING
17 juillet 2019
Francieli Zanon Boito¹ , Ramon Nou², Laércio Lima Pilla³, Jean Luca Bez⁴, Jean-François Méhaut¹, T

BEST FULL PAPER AWARD EDM 2019 - EDUCATIONAL DATA MINING
05 juillet 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Ski