Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Résultat majeur
Production scientifique
Résultat majeur : HOL-BOOGIE - AN INTERACTIVE PROVER-BACKEND FOR THE VERIFIED C COMPILER
HOL-BOOGIE - AN INTERACTIVE PROVER-BACKEND FOR THE VERIFIED C COMPILER
01 février 2010

Sascha Böhme, Michal Moskal, Wolfram Schulte, and Burkhart Wolff. J. Autom. Resoning(JAR),2009.
Boogie is a verification condition generator for an imperative core language. It has front-ends for the programming languages C# and C enriched by annotations in first-order logic, i.e. pre- and postconditions, assertions, and loop invariants. Moreover, concepts like ghost fields, ghost variables, ghost code and specification functions have been introduced to support a specific modeling methodology. Boogie’s verification conditions—constructed via a wp calculus from annotated programs—are usually transferred to automated theorem provers such as Simplify or Z3. This also comprises the expansion of language-specific modeling constructs in terms of a theory describing memory and elementary operations on it; this theory is called a machine/memory model. In this paper, we present a proof environment, HOL-Boogie, that combines Boogie with the interactive theorem prover Isabelle/HOL, for a specific C front-end and a machine/memory model. In particular, we present specific techniques combining automated and interactive proof methods for code verification. The main goal of our environment is to help program verification engineers in their task to “debug” annotations and to find combined proofs where purely automatic proof attempts fail.

Journal of Automated Reasoning (JAR). DOI 10.1007/s10817-009-9142-9. 44(1--2), pages 111-144. Springer, 2009.

Activités de recherche
  ° SAT
  ° Vérification

Equipe
  ° Test Formel et Exploration de Systèmes

Contact
  ° WOLFF Burkhart
Résultats majeurs
HOW FAST CAN YOU CONVERGE TOWARDS A CONSENSUS VALUE?
28 octobre 2021
In their recent work, Matthias Fuegger (LMF), Thomas Nowak (LISN), and Manfred Schwarz (TU Wien) stu

MODEL TRANSFORMATION AS CONSERVATIVE THEORY-TRANSFORMATION
30 octobre 2020
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the

BEST STUDENT PAPER AWARD (ML) AT ECML 2019
20 septembre 2019
Guillaume Doquet (A&O), Best Student Paper Award (category Machine Learning) at ECML 2019.

BEST PAPER AWARD - HPCS 2019 - ON SERVER-SIDE FILE ACCESS PATTERN MATCHING
17 juillet 2019
Francieli Zanon Boito¹ , Ramon Nou², Laércio Lima Pilla³, Jean Luca Bez⁴, Jean-François Méhaut¹, T

BEST FULL PAPER AWARD EDM 2019 - EDUCATIONAL DATA MINING
05 juillet 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Ski