Français Anglais
Accueil Annuaire Plan du site
Home > Research results > Research highlights
Research results
Research highlight : ALGEBRAIC INCREMENTAL MAINTENANCE FOR XML VIEWS
ALGEBRAIC INCREMENTAL MAINTENANCE FOR XML VIEWS
8 August 2013

The article by A. Bonifati, M. Goodfellow, I. Manolescu and D. Sileo will appear in the ACM TODS.
Materialized views can bring important performance benefits when querying XML documents. In the presence of XML document changes, materialized views need to be updated to faithfully reflect the changed document. In this work, we present an algebraic approach for propagating source updates to XML materialized views expressed in a powerful XML tree pattern formalism. Our approach differs from the state of the art in the area in two important ways. First, it relies on set-oriented, algebraic operations, to be contrasted with node-based previous approaches. Second, it exploits state-of-the-art features of XML stores and XML query evaluation engines, notably XML structural identifiers and associated structural join algorithms. We present algorithms for determining how updates should be propagated to views, and highlight the benefits of our approach over existing algorithms through a series of experiments.



Keyword
  [none]

Group
  ° Databases

Contact
  [none]
Research highlights
HOW FAST CAN YOU CONVERGE TOWARDS A CONSENSUS VALUE?
28 October 2021
In their recent work, Matthias Fuegger (LMF), Thomas Nowak (LISN), and Manfred Schwarz (TU Wien) stu

MODEL TRANSFORMATION AS CONSERVATIVE THEORY-TRANSFORMATION
30 October 2020
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the

BEST STUDENT PAPER AWARD (ML) AT ECML 2019
20 September 2019
Guillaume Doquet (A&O) received the Best Student Paper Award (category Machine Learning) at ECML 201

BEST PAPER AWARD - HPCS 2019 - ON SERVER-SIDE FILE ACCESS PATTERN MATCHING
17 July 2019
Francieli Zanon Boito¹ , Ramon Nou², Laércio Lima Pilla³, Jean Luca Bez⁴, Jean-François Méhaut¹, T

BEST FULL PAPER AWARD EDM 2019 - EDUCATIONAL DATA MINING
5 July 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Ski