Scalable, Low-Latency Data Analytics and its Applications
Yanlei Diao
20 December 2012, 14:00 - 20 December 2012, 16:00
Salle/Bat : 445/PCRI-N
Contact :
jesus.camacho-rodriguez@lri.fr
Activités de recherche :
Résumé :
An integral part of many data-intensive applications is the need to collect and analyze enormous data sets, such as click streams, search logs, and sensor streams to derive answers and insights with low latencies. Concurrently, new programming models and architectures have been developed for large-scale cluster computing, exemplified by recent MapReduce systems. However, these systems are designed for batch processing and require data set to be fully loaded into the cluster before running analytical queries, hence causing high delays of query answers.
In this talk, I present the design of a scalable, low-latency analytics platform, called Scalla, that fundamentally transforms the existing cluster computing paradigm into an incremental parallel processing paradigm, which provides the combined benefits of massive parallelism, incremental answers, and I/O efficiency. Our technical contributions include replacing an existing popular mechanism for partitioned parallelism with a purely hash-based mechanism and using dynamic frequency analysis to offer in-memory processing for most of the data. In this talk, I will also examine two application scenarios, click stream analysis, which has been used in our evaluation, and genomic data analysis, which is a new project that leverages Scalla for massive-scale genomic data processing and analysis.
Pour en savoir plus :