Français Anglais
Accueil Annuaire Plan du site
Home > Research results > Dissertations & habilitations
Research results
Ph.D de

Ph.D
Group : Large-scale Heterogeneous DAta and Knowledge

Apprentissage de la représentation du style écrit, application à la recommandation d’articles d’actualité

Starts on 20/03/2017
Advisor : BOURDA, Yolaine
[DOAN Bich-Liên]

Funding : Convention industrielle de formation par la recherche
Affiliation : Centrale Supélec
Laboratory : Octopeek et LRI Modhel

Defended on 09/03/2021, committee :
Directrice de thèse :
- Mme Bich-Liên Doan, CentraleSupélec

Co-encadrant de thèse :
- M. Fabrice Popineau, CentraleSupélec

Rapporteurs :
- M. Eric Gaussier, Université Grenoble Alpes
- M. Thierry Poibeau, CNRS et ENS/PSL

Examinateurs :
- Mme Anne Vilnat, Université Paris-Saclay
- Mme Armelle Brun, Université de Lorraine
- M. Benjamin Piwowarski, Sorbonne Université
- M. Max Chevalier, Université Toulouse III - Paul Sabatier

Research activities :

Abstract :
La modélisation des utilisateurs est une étape essentielle lorsqu'il s'agit de recommander des produits et proposer des services automatiquement. Les réseaux sociaux sont une ressource riche et abondante de données utilisateur (p. ex. liens partagés, messages postés) permettant de modéliser leurs intérêts et préférences. Dans cette thèse, nous proposons d'exploiter les articles d'actualité partagés sur les réseaux sociaux afin d'enrichir les modèles existants avec une nouvelle caractéristique textuelle : le style écrit. Cette thèse, à l'intersection des domaines du traitement automatique du langage naturel et des systèmes de recommandation, porte sur l'apprentissage de la représentation du style et de son application à la recommandation d'articles d'actualité. Dans un premier temps, nous proposons une nouvelle méthode d'apprentissage de la représentation du texte visant à projeter tout document dans un espace stylométrique de référence. L'hypothèse testée est qu'un tel espace peut être généralisé par un ensemble suffisamment large d'auteurs de référence, et que les projections vectorielles des écrits d'un auteur « nouveau » seront proches, d'un point de vue stylistique, des écrits d'un sous-ensemble consistant de ces auteurs de référence. Dans un second temps, nous proposons d'exploiter la représentation stylométrique du texte pour la recommandation d'articles d'actualité en la combinant à d'autres représentations (p. ex. thématique, lexicale, sémantique). Nous cherchons à identifier les caractéristiques les plus complémentaires pouvant permettre une recommandation d'articles plus pertinente et de meilleure qualité. L'hypothèse ayant motivé ces travaux est que les choix de lecture des individus sont non seulement influencés par le fond (p. ex. le thème des articles d'actualité, les entités mentionnées), mais aussi par la forme (c.-à-d. le style pouvant, par exemple, être descriptif, satirique, composé d'anecdotes personnelles, d'interviews). Les expérimentations effectuées montrent que non seulement le style écrit joue un rôle dans les préférences de lecture des individus, mais aussi que, lorsqu'il est combiné à d'autres caractéristiques textuelles, permet d'augmenter la précision et la qualité des recommandations en termes de diversité, de nouveauté et de sérendipité.

Ph.D. dissertations & Faculty habilitations
CAUSAL LEARNING FOR DIAGNOSTIC SUPPORT


CAUSAL UNCERTAINTY QUANTIFICATION UNDER PARTIAL KNOWLEDGE AND LOW DATA REGIMES


MICRO VISUALIZATIONS: DESIGN AND ANALYSIS OF VISUALIZATIONS FOR SMALL DISPLAY SPACES
The topic of this habilitation is the study of very small data visualizations, micro visualizations, in display contexts that can only dedicate minimal rendering space for data representations. For several years, together with my collaborators, I have been studying human perception, interaction, and analysis with micro visualizations in multiple contexts. In this document I bring together three of my research streams related to micro visualizations: data glyphs, where my joint research focused on studying the perception of small-multiple micro visualizations, word-scale visualizations, where my joint research focused on small visualizations embedded in text-documents, and small mobile data visualizations for smartwatches or fitness trackers. I consider these types of small visualizations together under the umbrella term ``micro visualizations.'' Micro visualizations are useful in multiple visualization contexts and I have been working towards a better understanding of the complexities involved in designing and using micro visualizations. Here, I define the term micro visualization, summarize my own and other past research and design guidelines and outline several design spaces for different types of micro visualizations based on some of the work I was involved in since my PhD.