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Abstract

It is shown that if G is a graph of order n with minimum degree 6(@), then for any
set of k specified vertices {wy,v2,--+, v} C V(@), there is a 2-factor of G with precisely
k cycles {C1, Cz,---,Cy} such that v € V(C;) for (1<i<k)if n=3k4dG) > 7’“_2
3k+1<n < 4k, 6(G) > =2 or 4k < n < 6k—3,5(G) > 3k—1orn > 6k—3, J(G) >z

Examples are described that indicate this result is sharp.



1 INTRODUCTION

A 2-factor of a graph G is a collection of vertex disjoint cycles {C1,Cq,---,Cr} that are
subgraphs of G that spar G (i.e. .U;-":lV(Oi) = V(@). If r = 1, then the cycle C; spans all
of the vertices of G, and o is a hamiltonian cycle and the graph G is hamiltonjan.

A graph G of order n with 6(G) > n/2 is hamiltonian, which is a classical result of
Dirac [3]. Moreover, it was shown in [1] that the same degree condition implies that there
is a 2-factor with precisely H cycles for any m, (1 < m < n/4). The second author posed
the following question at the Fifth Czech-Slovak International Symposium on Combinatorics,

Graph Theory, Algorith:s and Applications in Prague in July of 1998.

Question Given any set of k vertices {vi,va, -+, w4} in a graph G of order n > 6k — 3
and with §(G) > n/2, is there a 2-factor of G with precisely k cycles {C1,Ca, -+, Cy} such
that v; € V(Cy) for (1 <« < k)?

We will prove the following result, which gives a positive answer to the above Question.

Main Theorem

Let G be a graph of order n with minimum degree §((). If for a positive integer k,

a) n=3k,6(G) > 22 or

b) 3k +1 < n < 4k,6(G) > 2tk o

c) 4k <n<6k—3,6(G) >3k—1or

d) n > 6k —3,5(G) > 3,

then for any set of k& specified vertices {v1,v2,- -+, v¢} there is a 2-factor of G with & cycles

C} such that v; € V(C;) for 1 < i < k.

The assumption on the minimum degree is sharp in all cases. Let G' = (A4 + Ko j0+1+
Kok—24) + B, where a = [2k/3], A & K, and B = Ky_s. Then G cannot be partitioned
into triangles Cy, - -+, Gy such that [V(Ci) N (V(4) UV(B))| = 1, while {@)=3k—a—1=
[(7h~3)/3]. Let G = (A + Knom1 + Kn—p_s0-1) + B, where a = [(n—k+1)/3], and
A= K,and B2 Ky, Then§(G) =n—a—1=|@n+k —4)/3], though G does not
contain vertex disjoint cycles Cy,- -, G, such that |[V(C;) N (V(A)uV(B))| = 1. Suppose
n = 4k, and let G = A+ Koy + Kp—3.1 where A 2 K. Then 0{G) = 3k ~ 2, though G
does not contain vertex disjoint cycles C1, - -+, Cy such that [V(G;) N V(4)| = 1. Finally, let
G = K|(n-1)/2),[(n+1) /é] . Then §(G) = |(n — 1)/2], though G does not contain a 2-factor.
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A key step in the proof of the Main Theorem is to show the existence of vertex disjoint
cycles that contain the specified vertices. This type of packing result is of interest in its own
right. Thus, the following Theorem 1 will be the first step of the proof presented in the next

section.

Theorem 1 Let G be a graph of order n. If for a positive integer k,

a) n = 3k, 8(G) 2-7—’“3_—2 or '

b) 3k +1 < n <4k, 6(G) > Inth=3 4

c) 4k <n <6k—3,0(G)>3%k—1 or

d) n > 6k - 3,5(G) > &,

then for any set of k specified vertices {vy, vy, - - - y U }, there is o collection of k vertez disjoint

cycles C; such that [V(C:)] <5 and v; € V(C;) for 1 <i < k.

The next step is to show that this collection of ¢ycles can be transformed into a collection
of cycles that are a 2-factor of G. This type of partition result is also of interest in its own
right. Thus, the following- Theorem 2 will be the second step of the proof presented in the

third section.

Theorem 2 Let G be a graph of order n. Suppose that for a given set of k specified vertices
{v1,v2,..., 0}, there is a collection of k vertez disjoint cycles C;, such that v; € V(C;) for
1<i<k Joa(G) 2 n=|V(G), 5(G) > k+1, 02(G)+3(G) > n+3k—2, then there exist
disjoint cycles Hy, ..., Hy satisfying v; € V(H;),1 <i <k, and V(G) = UL,V (H;).

The condition ¢(G) > k+1 is necessary, since there are graphs G of order n and § (@) <k
which have no desired 2-factor if all neighbors of a vertex v with d(v) = §(G) = k belong to
the set of k specified vertices. 7

Note that in all four cases a) - d) of the Main Theorem and of Theorem 1 the assumptions

of Theorem 2 (§(G) 2 k + 1,09(@) + 6(G) > 36(G) > n + 3k — 2) are satisfied.

Notation used will be standard and will follow [2]. The vertex set and edge set of a
graph G will be denoted by V(G) and E(G) respectively. If v € V(G), then N (v) ={u e
V(G) : wu e E(G)}, and will be called the neighborhood of v, and if U C V(G), .then
N(v) NU will be denoted by just Nyr(v), the neighborhood of v restricted to I/. The dégree



of a vertex v, which is |V (v)|, will be denoted by d(v), and the dégree restricted to a subgraph
U will be denoted by dis(v).

2 Packing of cycles

In this section we will prove Theorem 1. In this proof‘,‘a. short cycle means a cycle of length

less than or equal to 5.

Proof: Assume that Theorem 1 is not true, and let G be a maximal counterexample. Since
n > 3k, G is not complete. Let z and y be nOnadjac_ent vertices in G. By the maximality
of G, G + zy contains vertex disjoint short cycles {él,C‘g,---,Ck} such that v; € V(C;)
for (1 < i < k). We may assume that zy € E(Cy). Then {C1,Cs,-+-,Ck.1} are vertex
disjoint short cycles in G such that v; € V(C;) for (1 < i < k — 1), v ¢ Ui—“;llV(C,-), and
‘ Zf;ll [V(Ci)l £ n—3. Among all possible choices of a set of vertex disjoint short cycles
{C1,C3,-+,Cp_1} such that v; € V(C;) for (1 <i< k— 1) and vy & Ui’-“;llV(Cg-), select one
collection such that

(1) 5L V(Cy)) is as small as possible,

and _

(2) subject to (1), %! dg, (vy,) is as small as possiblé.

We also assume that in this selection any permutation of the vertices {vy,va,--,vx} can be

used.
Let C; = (v, v, -+, v7,v) for (1 <i < k—1),let L = G[Uf;fV(Ci)], and let H = G—L.

Claim 1 d¢,(R) <3 for he V(H) and for 1 <i<k—1.

Proof: If dg,(h) > 4 for h € V(H) — {v}, then it is straightforward to check that the cycle
Ci can be replaced by a shorter cycle containing v; and A. In fact, the same can be said for

Uk, except in this case the cycle C; is replaced by a shorter cycle containing vy and not v;.

Claim 2 Suppose u1 and ug are distinct vertices in Ng(vg). Then the number of edges

between {vy, u1,us} and V(C;) is ot most 7 for 1 <1<k —1.

Proof: This is clearly true if de; (u1), de, (ua)} or de; (vy) < 1, so assume that this is not true. _

In the case when |V(C;)| = 5, observe that if dg,(u3) = 3, then u; must be adjacent to



three coﬁsecutive vertices of C; other than v;. Then, any adjacency of vy other than v will
result in a cycle of length less than C; containing v;. Hence dg,(u1), dg, (u2) < 2,.which
verifies the claim in this case. If [V(C;)| = 4, and if dg, (u;) > 3 for § = 1 or 2, then it is
straightforward to check that the cycle C; can be replaced by a cycle of length 3 containing
vg. Hence, dg;(u1) + de;(u2) + dey(ve) < 242 + 3 = 7, which verifies the claim.. This
leaves the case when C; = K3. If the claim is not true, then all of the 9 edges, except for
possibly 1, are between {vg,u1,ug} and V(C;), ;atnd it is easy to find two disjoint triangles in

these 6 vertices with v; and vy, in different cycles. This completes the verification of the claim.

First, we deal with the cases (a) and (b), and assume that §(G) > tk=3
Claim 3 NH(Uk) = V(H) — {'Uk}

Proof: Suppose v, and z € V(H)—{v,} are nonadjacent. Then dg(vy)+dg(z) < |V (H)| -1,
since |Ng (vx) N N (z)) < 1. Note also that dg(z) < |V(H)| — 2. Hence

dr(vg) + 2d(2) = 38(G) — (dag (ve) + du(2)) — da(z)

>2n+k—3—(V(H)|-1) - (V(H)]-2)
k~1
=2V (L) +k > Y @V(C)] +1). )

i=1 :
This implies that dg,{vg) + 2d¢,(z) = 2|V(C)| + 2 for some 4, 1 <4 < k—1. By Claim 1,
this is possible only if |V(C;}| = 3, dg, () = 3, and d¢, (vy) > 2. We may assume that vy and
v} are adjacent. Then, by replacing C; with (v;, v; , ,v;), we get a new cycle system, which
contradicts the choice rule (2).

Let u; and us € Ng{vg). Since Nir(u1) = Ng(ug) = {vz}, du{uwa) + dilug) + dg(vg) =
[V(H)| + 1. Hence

dr(u1) + dp (uz) + dr(ve) = 36(G) — (V(H)| + 1)

>4k —3— |V(EH) —1=2V(L) +k—4+ |[V(H)

On the other hand, dr(u1) + di(ug) + dr(vr) < 7(k — 1) by Claim 2. This is possible only if
[V(L)| = 3(k—1) and |V(H)| = 3, that is, n = 3k. This is not possible either, since wehave

assumed §(G) > 7—’“-5_—2 > —2—@3’“—_3 in this case.



This settles the cases (a) and (b).

Next, we deal with the cases (c) and (d). Note that 6(G) > max{3k — 1,n/2} in these
cases. By Claim 1, dgr(h) > 6(G) ~3(k — 1) > 2 for h € V(H). Let uy and ug € N (vy). For
(0<j<3),let 7; denote the number of cycles C; for (1 <4<k —1) such that de, (vg) = 5.
Thus, ¥ — 1 =rg + 7, + r9 + r3. This implies that

dp(vg) =3rs+2r+ 1 <k +2r3+7r9—1,
and by Claim 2
dr.(u1) 4+ dp(ug) < 4r3 + 5y + 6(r1 + r9) =6k — 2ry — ry — 6.
This implies on the average,
dp(u) <3k —r3 ~‘T2/2 -3

for vertices u € Ny (vg). Let r = rg 4 ro/2. The previous inequalities give lower bounds for

degrees in H, in particular it implies

du(vp) 2 8(G) ~k—2r +1,
and on the average

d(u) 2 6(G) —3k+r+3

for u € Np(vg). Since there is no short cycle in H that contains vy, Ng{vy) is an independent
set and the neighborhoods in H of the vertices in N i (vg) are disjoint except for . “Thus,
[V(H)| 2 da{ve)dr(u) + 1, where dy(u) represents the average degree in H of the vertices
in Ny (vg). Since n = |V(H)|+|V(L)| and |V(L)| > 3k — 3, we have the following inequality:

2 (6(G) —k—2r +1)(6(G) — 3k +r+3) + 3k — 2

2 (0(G) —k—2r+1)(3k —1— 3k +7+3) + 3% — 2
22(n/2—fc—2r+1)+r(3k—1——k—2r+1)+3k-——2
=n-+k—4r4+r(2k - 2r). |
This is possible only if r = k — 1. Therefore the minimization of the cycle lengths implies v

is adjacent to precisely {v;,v;, v} for (1 <4<k —1), and di(vg) > 2. If dg(vg) > 3, then
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there are vertices u1,uz,u3 € Ny (v;) with disjoint neighborhoods except for {vx} and with

average degree in H at least §(G) — 3k + k — 14 3 = §(G) — 2k + 2. This implies
[V(H)| > 3(6(Gy —2k+2)+1

>2(n/2—-2k+2)+ Bk ~1—-2k+2)+1
=n—3k+4+6>n—|V{L)|,

a contradiction, so we assume that Np(vg) = {ui,u}. Also, dg(u1), dg(ug) > 2, and so
there exist vertices ';01, wy € V(H)—{v} such that u;w; € E(H). Since there is no sh(;rt cycle
in H containing v, dg(u1)+dg(we) < |V(H)| =2 and dgr(ug) +dg(wy) < |V(H)|—2. Hence
ar (v ) +dr (1) +dr(ug)+dp (wr ) +dp (ws) > 56(Q)—2|V(H)|+2 > 2n+3k——1m2IV(H)I+2 =
2|{V(L)| + 3k +1 > 9k — 5. Since (9k — 5)/(k — 1) > 9, there is some C}, say C}, sﬁch that
there are at least 10 edges between {vy, u,us, w1, ws} and V(Cy).

We claim that there are 2 disjoint cycles containing v and vy respectively in the graph
spanned by {vg, u1, u2, w1, we}UV(C1). Note that these cycles must be shors. (If one of them
is not short, the other one is shorter than Cy, which contradicts the choice rule (1).) Note also
that vy, is adjacent to precisely {v{,v1,vi"}. If {V(C4)| = 5, then the only possible adjacency
of u; or ug is vy, for otherwise there would be a smaller cycle than ¢} that contains fu}‘c; Since
none of the vertices. has moré than 3 adjacencies in Cy, we can assume that u;v; € E(@), and
so wyvr € E(Q), since this would contradict the minimality of the cycle .lengths. There must
be a matching between {wy, w2} and V(Cy) — {v1} since there are at least 4 such edges, and
from this matching 2 disj(;int cycles conté.ining v; and v can be formed. Next consider the
case when |V (CY)| =4, and let v be the fourth vertex on C;. The minimality of the length of
the cycles implies that the only possible adjacencies of u; and ug are v; and vl With_- no loss
of generality we can assume that ujv; € E(G) (otherwise, the cycle C; could be repl;.ced by
a cycle C} containing vy, that falls into a previous case), and so wiv1 € E(G). There must be
a matching between w; and one of {uz,ws} and the set V(Ch) - {v1}, since there are at least
5 such edges. As bé‘fore, this gives the required 2 disjoint cycles,lso we are left with the case
when C} is a triangle. Since there are 10 edges between C; and {vg, w1, w1, Uz, wa },.we can
assume with no loss of generality that u; has at least one adjacency in C;. If wv; € E(Q),
then by replacing the cycle Cy with the cycle (vy, vy uy, v), wé have a new minimum length

cycle set with vy replacing v1. The structure of minimum cycle sets implies v1u; € E(G), so
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we can assume that viu; € B(G). viug,viwy € E(G), (or equivalently vius, viwy € E(G))
then there are 2 disjoint triangles, namely viuywyvy and vv] v} ve. Hence, we can assume
that 1 has at least 1 and at most 2 adjacencies in {u;, w1, ug, ws}. This impliesthat there are
at least 5 edges between {v]", v} and {u1, wl,ﬁg, wz }. Therefore, there are two independent
edges e1 and ey between these sets with one endvertex of e; in {us;wi} for i = 1,2, The
required 2 cycles can be formed using the edges e;, e; and viu;. This completes the proof of

Theorem 1.

3 Packing to Partition

In this section we will prove Theorem 2.

Proof: Choose the cycles C; such that 5, |V(C;)| is maximum. Let L = GUE,V(Cy)]
and H = &G — L. Let V(Hp) be a connected component of H.

Claim 1 (a) |[N(H) NV(C)| <1 for 1 <i< k.
(b) H = Hy

.Pr(mf: (a) Suppose |N(Hp) NV (C;)| > 2 for some i. With no loss of generality we can
assuine that = 1. Select two vertices uy,us € V(C1) and vertices hy, ho € V(Hp) (possibly
hy = hg) such that hyu; € E(GQ) for i = 1,2, v & Ci(u1,us), and Ny (C1(u1,uz)) = 0. Let
P = Ci(u1,ug) = [uf,--,u3], p= [V(P)|, and u € V(P). Then, for h € V(Hy),

n < dg(h) +dg(w) < [V(H) — 1+ [(V(E)| - p)/2] + dp(u).

Thit implies that dp(u) > (|V(L)| + p + 1}/2. Therefore, we can replace P in the cycle C;
by % path in Hy containing h; and hg, and all of the vertices « € V(P) can be inserted into
Cifein, ur] U (UE,C;), since dy (u) > ([V(L)|+p+1)/2. This gives a new collection of & cycles
that contradicts the maximality of the lengths of the cycles {C,Cs, -+, Cy}.

tb) Suppose H # Hy and choose two vertices v € V(Hy),v' € V(H) — V(Hp). Then
n < dv} +d(v') <|V(Hp)| — 1+ dp(v) + |[V(H)| — |V(Ho)| — 1 + dp.(+'). By (a) we obtain
2k > dr(v) +dp(v') = |V(L)| + 2 > 3k + 2, a contradiction.
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We may assume N(H)NV(C)) = {u;},1 <i<rand NH)NV(C;) =0, r+1<i<h.
Further, we may assume that {N(u;) N V(H)| > 2,1 < ¢ < g and |N(w) N V(H)| = 1 for
s+1<i<r Let U= {ug...,u}.

Claim 2 #; #v; for 1 <1< s

Proof: If u; = v; for some i, say i = 1, and dg(v1) > 2, then select by, hg € Ny(v1). Since
H is connected, there is a cycle Cf containing v and some vertices of H.
By the maximality of the lengths of the cycles,
. , ko :
40) S VI =1+ 2 L3IVIC < [V(E) -1 -2k — 1)
for some vertex v € V(C1) — v;. On the other hand, for A we have d(hy) < |[V(H)| —1+k.
Now vh1 & E(G) for any v € V(C1) — w1 and d(h1) +d(v) Sn—-1-(k~-1) =n~ka

contradiction.
Claim 3 For anyv € V(H),|[Nw) NV (L)} > 2.

Proof: Let y € V(Ci) — {u;}. Then v and y are nonadjacent. Now |N(v) N N(y)| > 2 since
d(v) + d(y) = n (Note that N(v) N N{y) C U).

Claim 4 |V(H)| > 2
Proof: For any v e V(HL,k+1<d{v) <|V(H)| - 1+r<|V(H)| -1+ k.

Claim 5 s > 2

Proof: Suppose s < 1. Then [V(H)| < r—1 by Claim 3. Note that |V(H)|-(k+1—(|V(H)|——
1)} < |BEH,L)| < s-[V(H) + (r — 3). (Thié inequality will be used several times.) Then
V()| (k+2— VD)) < s(V(E)| = 1)+ < |V(H)| — 1+F. Hence [V(H)[ — |V (E)| -1 =
VED(VE)=D+[V (E)=1 > k(V(EDI-1) > r(V(E)|=1) > (V(E)+1)(V (D] ~1) =
|V(H)|? - 1. 'This is impossible.

Claim 6 |V(H)[>r—s3

Proof: Suppose |V(H)| <r—s < k—s. Then |[V(H)|(k+2—{V(H)|) < s([V(H)|-1)+r <
(|V(H)| = 1)(k — [V(H)|) + k. This implies 2|V (H)| < |V (H)], but this contradicts Claim 4.
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Claim 7 For any y € V(L) — U, d(y) = dp(y) > [V(L)| —s+1.

Proof: Since » and y are nonadjacent for any u € V(H), Yowevim Q) < V(H)(|V(H)| -~
L+ sV(H) +r~sSody) >n— ([V(H)] -1} — s — wiay > [V(L)] — s by Claim 6.

- Claim 8 There exist no disjoint subgraphs P, Cs,...,Cy, in L satisfying P is a path join-
iryg two vertices in {uy,...,us} and [V(PYN{vy,...,u}| = 1, O} is a cycle and |V(C)) N
{v1,- o ol =1 for 2 < i < k, and |(V(P) UUELV(IC))NU| > k—1.

P:oof: Let u; and u; be terminal vertices of P. Choose any v € Ny(u;). Then there exists
v' € Ny(u;) — {v}. Combining a path connecting v and ' in H and P, we get a cycle C.
Then all vertices in V(L) — UE,V(C!) — U are insertible one by one, because of Claim 7.
(Mote that dr.(y) > V(L) —s+1> [V(L)—k+1> Jﬂ‘;—’ﬂ+ % _k+12> v+ k1)
Tkis contradicts the maximality of the choice of C1,...,Cy. (We may miss one vertex in U,
but they contain two vertices in H.)
’ Choose disjoint cycles Dy,..., Dy in L suéh that Zle |V (D;) is as small as possible
subject to u; € V(D;),1 <4 < 7, and [V(D;) N {v1,...,v3}| = 1. We may assume that
vi @ V(D;),1<i < k. Let Lo = L — US, V(D).

Claim 9 N(vy) N {ug, ..., u,} # 0.

Proof: If N{v1) N {ua,...,us} = 0, then d(vy) < [V(L)| —1— (s —1) = |[V(L)] - s, a
coetradiction to Claim 7.

Consider the following configuration (we call it a good con figuration):
15i<s1<j<s,i%] o
w & Np, (vi),v; € Dyfuf, w]
y s 'uj-“ ory=uv;,y € Dj[u;',w_],z € D;(vs, ui).
If 5 € N{v;), we call it a very good con figuration. Here and in the following Dj[uj', w|

wiil be used as the abbreviation for V (D, [u}",w"]).
laim 10 A good configuration always exists.

Proof: Take v; = v1 and w = u; € N(v1) N {uy,...,u,;} which are guaranteed by Claim 9.
Define the orientation of D1 so that Dy (vy,u1) # 0.
Now consider a good con figumtion.(if possiblé, a very good con figuration). We may

assume that 1 = 1 and § = 2.
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Clain: 11 dp,(2) + dp, (y) + dp, (vs) < V(D) +1

Proot: N(y)NN(v2)N(V(D1)—{u1,v1}) = 0 (otherwise, we get a disjoint path P connecting
u1 and ug through v; and a cycle G through vy in G[V(D1) UV (Dy)], contradicting Claim
8). |

Nete that dp,y, 4,)(2} = 2 by the minimality of Dy. So, dp, (2) + dp, (y) + dp, (ve) <
2|D1 (w1, v1)| + 4+ |Difvr,u1)| +2 < 2[V(Dy)| + 1. ‘ -

Clain: 12 dp,(2) + dp, (y) + dp, (v2) < 2IV(D2)|

We have dp, (v2) = 2 by the minimality of Ds. Next dD2 () < |V(D2)| —1, since {y,v,;}
N(z)'r and dp,(y) < IV(DZ)[ - 1.

Clain: 13 dp,(2) +dp,(y) + dp,(v2) < 2]V (D)|+2 fors+1<i<k

Proot: Suppose, dp,(z) + dp;(y) + dp,(vz) > 2|V(D;)| + 2 for some i. Then dp,(z) > 3.
Chooss wy, wy € Np, (z) so that v; € D;[wr, ws) and N(z) N D;(wr,we) = 0. Since N(vg) N

N(y) 1 Di(wa,w1) = 0, the claim follows.
Clair. 14 dp,(2) +dp,(y) +dp,(v2) S 2[V(D;)| 41 for3<i<s

Proot: Suppose, dp,(z) +dp, (y)+dp, (ve) > 2|.V(Dz-)|-+ 2 for some i. Choose w; and wy as in
the preof of Claim 13. Then {wi,wsz} C N(2) N N(y) N N () and |N(w) N{z,y,v2}| = 2 for
any w <= V' (D2) — {w1, we}. In particular, Dy[w;,ws] € N(y)NN(v2) and Dyfws,wq] C N{z).
CASE 1 v; =un
Since yvg,y, we) is a triangle, D;(wsg, w;) = 0. This means that vou; € E(G) and yv; € E(G)
which s a very good conﬁgura,tion.‘ By the choice of the configuration, vs and z are adjacent.
Then ;ve, z,ws) and (y, v;,v;") are triangles, which contradicts Claim 8.
CASE 2 v; # wy
If Di (o1, wa) # {vi}, then (va, wy, 2, w1) and (y, v, v}") or (3, vi,v; ) are cycles. So D;{wq,wq) =
{vi}. “Ve may assume that w; # u;. Then there is a very good configuration. By the choice
of the :onfiguration vo and z are adjacent. 'f‘hen (v2,2,w2) and (y, v;, v; ) are triangles. This

contradicts Claim 8.
Claim: 15 dpo(2) + dre(y) + dre(ve) < 2|V (L)
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Proof: N(y) N N{vg) N Ly = 0.
Claim 16 d(2) +d(y) + d(v2) > 2[V(L)| —s+1) +3k—2 | .

Eroof: For any v € V(H) we have d(v) + d(y) + d(vs) > 02(@) + 6(G) > n + 3k — 2.

st 8k =2— [l Toevian 4(v) > n+3k—2— ([V(H)|—1+s+ wEy) > V(L) - s+(3k—2).
‘F'herefore, d(z) + d{y) + d(va) > 2(|V(L)| — s + 1) + 3k — 2.

By Claims 11, 12, 13, 14 and 15, d(2) + d(y) + d(vz) < 2]V(D1)| + 1 + 2|V (Da)| +
EsCIVD)| +1) + Ty 1 (QIV(D)| +2) + V(o) < AV 414524305 — 5) <
AV (L) +2k —s—1. By Claim 16, 2|V (L)| + 3k — 25 < 2\V(L)|+2k—s—1. Hence, k+1 < 3, -

.vhich is impossible. This completes the proof of Theorem 2.
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