

TWO-FACTORS EACH COMPONENT OF WHICH CONTAINS A SPECIFIED VERTEX

EGAWA Y / ENOMOTO H / FAUDREE R J / LI H / SCHIERMEYER I

Unité Mixte de Recherche 8623 CNRS-Université Paris Sud-LRI

10/2002

Rapport de Recherche N° 1335

CNRS – Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650
91405 ORSAY Cedex (France)

Two-Factors Each Component of Which Contains a Specified Vertex

Yoshimi Egawa

Department of Applied Mathematics
Science University of Tokyo
Tokyo 162-8601, JAPAN

Hikoe Enomoto

Department of Mathematics

Keio University

Yokohama 223-8522, JAPAN

 $Ralph\ J.\ Faudree$ Department of Mathematical Sciences University of Memphis Memphis, TN 38152 , USA

Hao Li

LRI, UMR 8623 du CNRS

Université Paris-Sud

91405 Orsay cedex, FRANCE

Ingo Schiermeyer

Fakultät für Mathematik und Informatik

Technische Universität Bergakademie Freiberg

D-09596 Freiberg, Germany

December 12, 2000

Abstract

It is shown that if G is a graph of order n with minimum degree $\delta(G)$, then for any set of k specified vertices $\{v_1,v_2,\cdots,v_k\}\subset V(G)$, there is a 2-factor of G with precisely k cycles $\{C_1,C_2,\cdots,C_k\}$ such that $v_i\in V(C_i)$ for $(1\leq i\leq k)$ if $n=3k,\delta(G)\geq \frac{7k-2}{3}$ or $3k+1\leq n\leq 4k,\delta(G)\geq \frac{2n+k-3}{3}$ or $4k\leq n\leq 6k-3,\delta(G)\geq 3k-1$ or $n\geq 6k-3,\delta(G)\geq \frac{n}{2}$. Examples are described that indicate this result is sharp.

1 INTRODUCTION

A 2-factor of a graph G is a collection of vertex disjoint cycles $\{C_1, C_2, \dots, C_r\}$ that are subgraphs of G that span G (i.e. $\bigcup_{i=1}^r V(C_i) = V(G)$). If r = 1, then the cycle C_1 spans all of the vertices of G, and so is a hamiltonian cycle and the graph G is hamiltonian.

A graph G of order n with $\delta(G) \geq n/2$ is hamiltonian, which is a classical result of Dirac [3]. Moreover, it was shown in [1] that the same degree condition implies that there is a 2-factor with precisely H cycles for any m, $(1 \leq m \leq n/4)$. The second author posed the following question at the Fifth Czech-Slovak International Symposium on Combinatorics, Graph Theory, Algorithms and Applications in Prague in July of 1998.

Question Given any set of k vertices $\{v_1, v_2, \dots, v_k\}$ in a graph G of order $n \geq 6k-3$ and with $\delta(G) \geq n/2$, is there a 2-factor of G with precisely k cycles $\{C_1, C_2, \dots, C_k\}$ such that $v_i \in V(C_i)$ for $(1 \leq i \leq k)$?

We will prove the following result, which gives a positive answer to the above Question.

Main Theorem

Let G be a graph of order n with minimum degree $\delta(G)$. If for a positive integer k,

a)
$$n = 3k, \delta(G) \ge \frac{7k-2}{3}$$
 or

b)
$$3k + 1 \le n \le 4k, \delta(G) \ge \frac{2n + k - 3}{3}$$
 or

c)
$$4k \le n \le 6k - 3, \delta(G) \ge 3k - 1$$
 or

d)
$$n \ge 6k - 3, \delta(G) \ge \frac{n}{2}$$
,

then for any set of k specified vertices $\{v_1, v_2, \dots, v_k\}$ there is a 2-factor of G with k cycles C_i such that $v_i \in V(C_i)$ for $1 \leq i \leq k$.

The assumption on the minimum degree is sharp in all cases. Let $G = (A + K_{a-1,a+1} + K_{2k-2a}) + B$, where $a = \lceil 2k/3 \rceil$, $A \cong K_a$ and $B \cong K_{k-a}$. Then G cannot be partitioned into triangles C_1, \dots, C_k such that $|V(C_i) \cap (V(A) \cup V(B))| = 1$, while $\delta(G) = 3k - a - 1 = \lfloor (7k-3)/3 \rfloor$. Let $G = (A + K_{2a-1} + K_{n-k-2a-1}) + B$, where $a = \lceil (n-k+1)/3 \rceil$, and $A \cong K_a$ and $B \cong K_{k-a}$. Then $\delta(G) = n - a - 1 = \lfloor (2n + k - 4)/3 \rfloor$, though G does not contain vertex disjoint cycles C_1, \dots, C_k such that $|V(C_i) \cap (V(A) \cup V(B))| = 1$. Suppose $n \geq 4k$, and let $G = A + K_{2k-1} + K_{n-3k+1}$ where $A \cong K_k$. Then $\delta(G) = 3k - 2$, though G does not contain vertex disjoint cycles C_1, \dots, C_k such that $|V(C_i) \cap V(A)| = 1$. Finally, let $G = K_{\lfloor (n-1)/2 \rfloor, \lceil (n+1)/2 \rceil}$. Then $\delta(G) = \lfloor (n-1)/2 \rfloor$, though G does not contain a 2-factor.

A key step in the proof of the Main Theorem is to show the existence of vertex disjoint cycles that contain the specified vertices. This type of **packing** result is of interest in its own right. Thus, the following Theorem 1 will be the first step of the proof presented in the next section.

Theorem 1 Let G be a graph of order n. If for a positive integer k,

a)
$$n = 3k, \delta(G) \geq \frac{7k-2}{3}$$
 or

b)
$$3k+1 \le n \le 4k, \delta(G) \ge \frac{2n+k-3}{3}$$
 or

c)
$$4k \le n \le 6k - 3, \delta(G) \ge 3k - 1$$
 or

d)
$$n \geq 6k - 3, \delta(G) \geq \frac{n}{2}$$
,

then for any set of k specified vertices $\{v_1, v_2, \cdots, v_k\}$, there is a collection of k vertex disjoint cycles C_i such that $|V(C_i)| \leq 5$ and $v_i \in V(C_i)$ for $1 \leq i \leq k$.

The next step is to show that this collection of cycles can be transformed into a collection of cycles that are a 2-factor of G. This type of **partition** result is also of interest in its own right. Thus, the following Theorem 2 will be the second step of the proof presented in the third section.

Theorem 2 Let G be a graph of order n. Suppose that for a given set of k specified vertices $\{v_1, v_2, \ldots, v_k\}$, there is a collection of k vertex disjoint cycles C_i , such that $v_i \in V(C_i)$ for $1 \le i \le k$. If $\sigma_2(G) \ge n = |V(G)|$, $\delta(G) \ge k+1$, $\sigma_2(G) + \delta(G) \ge n+3k-2$, then there exist disjoint cycles H_1, \ldots, H_k satisfying $v_i \in V(H_i), 1 \le i \le k$, and $V(G) = \bigcup_{i=1}^k V(H_i)$.

The condition $\delta(G) \ge k+1$ is necessary, since there are graphs G of order n and $\delta(G) \le k$ which have no desired 2-factor if all neighbors of a vertex v with $d(v) = \delta(G) = k$ belong to the set of k specified vertices.

Note that in all four cases a) - d) of the Main Theorem and of Theorem 1 the assumptions of Theorem 2 $(\delta(G) \ge k + 1, \sigma_2(G) + \delta(G) \ge 3\delta(G) \ge n + 3k - 2)$ are satisfied.

Notation used will be standard and will follow [2]. The vertex set and edge set of a graph G will be denoted by V(G) and E(G) respectively. If $v \in V(G)$, then $N(v) = \{u \in V(G) : vu \in E(G)\}$, and will be called the neighborhood of v, and if $U \subset V(G)$, then $N(v) \cap U$ will be denoted by just $N_U(v)$, the neighborhood of v restricted to U. The degree

of a vertex v, which is |N(v)|, will be denoted by d(v), and the degree restricted to a subgraph U will be denoted by $d_U(v)$.

2 Packing of cycles

In this section we will prove Theorem 1. In this proof, a short cycle means a cycle of length less than or equal to 5.

Proof: Assume that Theorem 1 is not true, and let G be a maximal counterexample. Since $n \geq 3k$, G is not complete. Let x and y be nonadjacent vertices in G. By the maximality of G, G + xy contains vertex disjoint short cycles $\{C_1, C_2, \dots, C_k\}$ such that $v_i \in V(C_i)$ for $(1 \leq i \leq k)$. We may assume that $xy \in E(C_k)$. Then $\{C_1, C_2, \dots, C_{k-1}\}$ are vertex disjoint short cycles in G such that $v_i \in V(C_i)$ for $(1 \leq i \leq k-1)$, $v_k \notin \bigcup_{i=1}^{k-1} V(C_i)$, and $\sum_{i=1}^{k-1} |V(C_i)| \leq n-3$. Among all possible choices of a set of vertex disjoint short cycles $\{C_1, C_2, \dots, C_{k-1}\}$ such that $v_i \in V(C_i)$ for $(1 \leq i \leq k-1)$ and $v_k \notin \bigcup_{i=1}^{k-1} V(C_i)$, select one collection such that

(1) $\sum_{i=1}^{k-1} |V(C_i)|$ is as small as possible, and

(2) subject to (1), $\sum_{i=1}^{k-1} d_{C_i}(v_k)$ is as small as possible.

We also assume that in this selection any permutation of the vertices $\{v_1, v_2, \dots, v_k\}$ can be used.

Let
$$C_i = (v_i, v_i^+, \dots, v_i^-, v_i)$$
 for $(1 \le i \le k-1)$, let $L = G[\bigcup_{i=1}^{k-1} V(C_i)]$, and let $H = G - L$.

Claim 1 $d_{C_i}(h) \leq 3$ for $h \in V(H)$ and for $1 \leq i \leq k-1$.

Proof: If $d_{C_i}(h) \geq 4$ for $h \in V(H) - \{v_k\}$, then it is straightforward to check that the cycle C_i can be replaced by a shorter cycle containing v_i and h. In fact, the same can be said for v_k , except in this case the cycle C_i is replaced by a shorter cycle containing v_k and not v_i .

Claim 2 Suppose u_1 and u_2 are distinct vertices in $N_H(v_k)$. Then the number of edges between $\{v_k, u_1, u_2\}$ and $V(C_i)$ is at most 7 for $1 \le i \le k-1$.

Proof: This is clearly true if $d_{C_i}(u_1), d_{C_i}(u_2)$ or $d_{C_i}(v_k) \leq 1$, so assume that this is not true. In the case when $|V(C_i)| = 5$, observe that if $d_{C_i}(u_1) = 3$, then u_1 must be adjacent to

three consecutive vertices of C_i other than v_i . Then, any adjacency of v_k other than v_i will result in a cycle of length less than C_i containing v_k . Hence $d_{C_i}(u_1), d_{C_i}(u_2) \leq 2$, which verifies the claim in this case. If $|V(C_i)| = 4$, and if $d_{C_i}(u_j) \geq 3$ for j = 1 or 2, then it is straightforward to check that the cycle C_i can be replaced by a cycle of length 3 containing v_k . Hence, $d_{C_i}(u_1) + d_{C_i}(u_2) + d_{C_i}(v_k) \leq 2 + 2 + 3 = 7$, which verifies the claim. This leaves the case when $C_i = K_3$. If the claim is not true, then all of the 9 edges, except for possibly 1, are between $\{v_k, u_1, u_2\}$ and $V(C_i)$, and it is easy to find two disjoint triangles in these 6 vertices with v_i and v_k in different cycles. This completes the verification of the claim.

First, we deal with the cases (a) and (b), and assume that $\delta(G) \geq \frac{2n+k-3}{3}$.

Claim 3 $N_H(v_k) = V(H) - \{v_k\}.$

Proof: Suppose v_k and $x \in V(H) - \{v_k\}$ are nonadjacent. Then $d_H(v_k) + d_H(x) \le |V(H)| - 1$, since $|N_H(v_k) \cap N_H(x)| \le 1$. Note also that $d_H(x) \le |V(H)| - 2$. Hence

$$egin{align} d_L(v_k) + 2d_L(x) & \geq 3\delta(G) - (d_H(v_k) + d_H(x)) - d_H(x) \ & \geq 2n + k - 3 - (|V(H)| - 1) - (|V(H)| - 2) \ & = 2|V(L)| + k > \sum_{i=1}^{k-1} (2|V(C_i)| + 1). \end{split}$$

This implies that $d_{C_i}(v_k) + 2d_{C_i}(x) \ge 2|V(C_i)| + 2$ for some $i, 1 \le i \le k-1$. By Claim 1, this is possible only if $|V(C_i)| = 3$, $d_{C_i}(x) = 3$, and $d_{C_i}(v_k) \ge 2$. We may assume that v_k and v_i^+ are adjacent. Then, by replacing C_i with (v_i, v_i^-, x, v_i) , we get a new cycle system, which contradicts the choice rule (2).

Let u_1 and $u_2 \in N_H(v_k)$. Since $N_H(u_1) = N_H(u_2) = \{v_k\}$, $d_H(u_1) + d_H(u_2) + d_H(v_k) = |V(H)| + 1$. Hence

$$d_L(u_1) + d_L(u_2) + d_L(v_k) \ge 3\delta(G) - (|V(H)| + 1)$$

$$\ge 2n + k - 3 - |V(H)| - 1 = 2|V(L)| + k - 4 + |V(H)|.$$

On the other hand, $d_L(u_1) + d_L(u_2) + d_L(v_k) \le 7(k-1)$ by Claim 2. This is possible only if |V(L)| = 3(k-1) and |V(H)| = 3, that is, n = 3k. This is not possible either, since we have assumed $\delta(G) \ge \frac{7k-2}{3} > \frac{2n+k-3}{3}$ in this case.

This settles the cases (a) and (b).

Next, we deal with the cases (c) and (d). Note that $\delta(G) \geq \max\{3k-1, n/2\}$ in these cases. By Claim 1, $d_H(h) \geq \delta(G) - 3(k-1) \geq 2$ for $h \in V(H)$. Let u_1 and $u_2 \in N_H(v_k)$. For $(0 \leq j \leq 3)$, let r_j denote the number of cycles C_i for $(1 \leq i \leq k-1)$ such that $d_{C_i}(v_k) = j$. Thus, $k-1 = r_0 + r_1 + r_2 + r_3$. This implies that

$$d_L(v_k) = 3r_3 + 2r_2 + r_1 \le k + 2r_3 + r_2 - 1,$$

and by Claim 2

$$d_L(u_1) + d_L(u_2) \le 4r_3 + 5r_2 + 6(r_1 + r_0) = 6k - 2r_3 - r_2 - 6.$$

This implies on the average,

$$d_L(u) \le 3k - r_3 - r_2/2 - 3$$

for vertices $u \in N_H(v_k)$. Let $r = r_3 + r_2/2$. The previous inequalities give lower bounds for degrees in H, in particular it implies

$$d_H(v_k) \ge \delta(G) - k - 2r + 1,$$

and on the average

$$d_H(u) \ge \delta(G) - 3k + r + 3$$

for $u \in N_H(v_k)$. Since there is no short cycle in H that contains v_k , $N_H(v_k)$ is an independent set and the neighborhoods in H of the vertices in $N_H(v_k)$ are disjoint except for v_k . Thus, $|V(H)| \ge d_H(v_k)d_H(u) + 1$, where $d_H(u)$ represents the average degree in H of the vertices in $N_H(v_k)$. Since n = |V(H)| + |V(L)| and $|V(L)| \ge 3k - 3$, we have the following inequality:

$$\begin{split} n &\geq (\delta(G) - k - 2r + 1)(\delta(G) - 3k + r + 3) + 3k - 2 \\ &\geq (\delta(G) - k - 2r + 1)(3k - 1 - 3k + r + 3) + 3k - 2 \\ &\geq 2(n/2 - k - 2r + 1) + r(3k - 1 - k - 2r + 1) + 3k - 2 \\ &= n + k - 4r + r(2k - 2r). \end{split}$$

This is possible only if r = k - 1. Therefore the minimization of the cycle lengths implies v_k is adjacent to precisely $\{v_i^-, v_i, v_i^+\}$ for $(1 \le i \le k - 1)$, and $d_H(v_k) \ge 2$. If $d_H(v_k) \ge 3$, then

there are vertices $u_1, u_2, u_3 \in N_H(v_k)$ with disjoint neighborhoods except for $\{v_k\}$ and with average degree in H at least $\delta(G) - 3k + k - 1 + 3 = \delta(G) - 2k + 2$. This implies

$$|V(H)| \ge 3(\delta(G) - 2k + 2) + 1$$

 $\ge 2(n/2 - 2k + 2) + (3k - 1 - 2k + 2) + 1$
 $= n - 3k + 6 > n - |V(L)|,$

a contradiction, so we assume that $N_H(v_k) = \{u_1, u_2\}$. Also, $d_H(u_1), d_H(u_2) \geq 2$, and so there exist vertices $w_1, w_2 \in V(H) - \{v_k\}$ such that $u_i w_i \in E(H)$. Since there is no short cycle in H containing v_k , $d_H(u_1) + d_H(w_2) \leq |V(H)| - 2$ and $d_H(u_2) + d_H(w_1) \leq |V(H)| - 2$. Hence $d_L(v_k) + d_L(u_1) + d_L(u_2) + d_L(w_1) + d_L(w_2) \geq 5\delta(G) - 2|V(H)| + 2 \geq 2n + 3k - 1 - 2|V(H)| + 2 = 2|V(L)| + 3k + 1 \geq 9k - 5$. Since (9k - 5)/(k - 1) > 9, there is some C_i , say C_1 , such that there are at least 10 edges between $\{v_k, u_1, u_2, w_1, w_2\}$ and $V(C_1)$.

We claim that there are 2 disjoint cycles containing v_1 and v_k respectively in the graph spanned by $\{v_k,u_1,u_2,w_1,w_2\}\cup V(C_1)$. Note that these cycles must be short. (If one of them is not short, the other one is shorter than C_1 , which contradicts the choice rule (1).) Note also that v_k is adjacent to precisely $\{v_1^-, v_1, v_1^+\}$. If $|V(C_1)| = 5$, then the only possible adjacency of u_1 or u_2 is v_1 , for otherwise there would be a smaller cycle than C_1 that contains v_k . Since none of the vertices has more than 3 adjacencies in C_1 , we can assume that $u_1v_1 \in E(G)$, and so $w_1v_1 \not\in E(G)$, since this would contradict the minimality of the cycle lengths. There must be a matching between $\{w_1, w_2\}$ and $V(C_1) - \{v_1\}$ since there are at least 4 such edges, and from this matching 2 disjoint cycles containing v_1 and v_k can be formed. Next consider the case when $|V(C_1)|=4$, and let v_1^* be the fourth vertex on C_1 . The minimality of the length of the cycles implies that the only possible adjacencies of u_1 and u_2 are v_1 and v_1^* . With no loss of generality we can assume that $u_1v_1\in E(G)$ (otherwise, the cycle C_1 could be replaced by a cycle C'_1 containing v_k that falls into a previous case), and so $w_1v_1 \not\in E(G)$. There must be a matching between w_1 and one of $\{u_2, w_2\}$ and the set $V(C_1) - \{v_1\}$, since there are at least 5 such edges. As before, this gives the required 2 disjoint cycles, so we are left with the case when C_1 is a triangle. Since there are 10 edges between C_1 and $\{v_k, u_1, w_1, u_2, w_2\}_n$ we can assume with no loss of generality that u_1 has at least one adjacency in C_1 . If $u_1v_1^- \in E(G)$, then by replacing the cycle C_1 with the cycle $(v_k, v_1^-u_1, v_k)$, we have a new minimum length cycle set with v_k replacing v_1 . The structure of minimum cycle sets implies $v_1u_1 \in E(G)$, so

we can assume that $v_1u_1 \in E(G)$. If $v_1u_1, v_1w_1 \in E(G)$, (or equivalently $v_1u_2, v_1w_2 \in E(G)$) then there are 2 disjoint triangles, namely $v_1u_1w_1v_1$ and $v_kv_1^-v_1^+v_k$. Hence, we can assume that v_1 has at least 1 and at most 2 adjacencies in $\{u_1, w_1, u_2, w_2\}$. This implies that there are at least 5 edges between $\{v_1^-, v_1^+\}$ and $\{u_1, w_1, u_2, w_2\}$. Therefore, there are two independent edges e_1 and e_2 between these sets with one endvertex of e_i in $\{u_i, w_i\}$ for i = 1, 2. The required 2 cycles can be formed using the edges e_1, e_2 and v_1u_1 . This completes the proof of Theorem 1.

3 Packing to Partition

In this section we will prove Theorem 2.

Proof: Choose the cycles C_i such that $\sum_{i=1}^k |V(C_i)|$ is maximum. Let $L = G[\bigcup_{i=1}^k V(C_i)]$ and H = G - L. Let $V(H_0)$ be a connected component of H.

Claim 1 (a)
$$|N(H_0) \cap V(C_i)| \le 1$$
 for $1 \le i \le k$.
(b) $H = H_0$

Proof: (a) Suppose $|N(H_0) \cap V(C_i)| \geq 2$ for some i. With no loss of generality we can assume that i=1. Select two vertices $u_1, u_2 \in V(C_1)$ and vertices $h_1, h_2 \in V(H_0)$ (possibly $h_1 = h_2$) such that $h_i u_i \in E(G)$ for $i=1,2, v_1 \notin C_1(u_1,u_2)$, and $N_{H_0}(C_1(u_1,u_2)) = \emptyset$. Let $P = C_1(u_1,u_2) = [u_1^+, \cdots, u_2^-], p = |V(P)|,$ and $u \in V(P)$. Then, for $h \in V(H_0)$,

$$n \le d_G(h) + d_G(u) \le |V(H)| - 1 + \lceil (|V(L)| - p)/2 \rceil + d_L(u).$$

This implies that $d_L(u) \geq (|V(L)| + p + 1)/2$. Therefore, we can replace P in the cycle C_1 by a path in H_0 containing h_1 and h_2 , and all of the vertices $u \in V(P)$ can be inserted into $C_1[u_2, u_1] \cup (\bigcup_{i=2}^k C_i)$, since $d_L(u) \geq (|V(L)| + p + 1)/2$. This gives a new collection of k cycles that contradicts the maximality of the lengths of the cycles $\{C_1, C_2, \dots, C_k\}$.

(b) Suppose $H \neq H_0$ and choose two vertices $v \in V(H_0), v' \in V(H) - V(H_0)$. Then $n \leq d(v) + d(v') \leq |V(H_0)| - 1 + d_L(v) + |V(H)| - |V(H_0)| - 1 + d_L(v')$. By (a) we obtain $2k \geq d_L(v) + d_L(v') \geq |V(L)| + 2 \geq 3k + 2$, a contradiction.

We may assume $N(H) \cap V(C_i) = \{u_i\}, 1 \le i \le r$, and $N(H) \cap V(C_i) = \emptyset, r+1 \le i \le k$. Further, we may assume that $|N(u_i) \cap V(H)| \ge 2, 1 \le i \le s$ and $|N(u_i) \cap V(H)| = 1$ for $s+1 \le i \le r$. Let $U = \{u_1, \ldots, u_r\}$.

Claim 2 $u_i \neq v_i$ for $1 \leq i \leq s$

Proof: If $u_i = v_i$ for some i, say i = 1, and $d_H(v_1) \ge 2$, then select $h_1, h_2 \in N_H(v_1)$. Since H is connected, there is a cycle C'_1 containing v_1 and some vertices of H.

By the maximality of the lengths of the cycles,

$$d_L(v) \leq |V(C_1)| - 1 + \sum_{i=2}^k \lfloor \frac{1}{2} |V(C_i)| \rfloor \leq |V(L)| - 1 - 2(k-1)$$

for some vertex $v \in V(C_1) - v_1$. On the other hand, for h_1 we have $d(h_1) \leq |V(H)| - 1 + k$. Now $vh_1 \notin E(G)$ for any $v \in V(C_1) - v_1$ and $d(h_1) + d(v) \leq n - 1 - (k - 1) = n - k$, a contradiction.

Claim 3 For any $v \in V(H), |N(v) \cap V(L)| \geq 2$.

Proof: Let $y \in V(C_i) - \{u_i\}$. Then v and y are nonadjacent. Now $|N(v) \cap N(y)| \ge 2$ since $d(v) + d(y) \ge n$ (Note that $N(v) \cap N(y) \subseteq U$).

Claim 4 $|V(H)| \geq 2$

Proof: For any $v \in V(H), k + 1 \le d(v) \le |V(H)| - 1 + r \le |V(H)| - 1 + k$.

Claim 5 $s \geq 2$

Proof: Suppose $s \le 1$. Then $|V(H)| \le r - 1$ by Claim 3. Note that $|V(H)| \cdot (k+1-(|V(H)|-1)) \le |E(H,L)| \le s \cdot |V(H)| + (r-s)$. (This inequality will be used several times.) Then $|V(H)|(k+2-|V(H)|) \le s(|V(H)|-1) + r \le |V(H)|-1 + k$. Hence $|V(H)|^2 - |V(H)|-1 = |V(H)|(|V(H)|-2) + |V(H)|-1 \ge k(|V(H)|-1) \ge r(|V(H)|-1) \ge (|V(H)|+1)(|V(H)|-1) = |V(H)|^2 - 1$. This is impossible.

Claim 6 |V(H)| > r - s

Proof: Suppose $|V(H)| \le r - s \le k - s$. Then $|V(H)|(k+2-|V(H)|) \le s(|V(H)|-1) + r \le (|V(H)|-1)(k-|V(H)|) + k$. This implies $2|V(H)| \le |V(H)|$, but this contradicts Claim 4.

Claim 7 For any $y \in V(L) - U, d(y) = d_L(y) \ge |V(L)| - s + 1$.

Proof: Since u and y are nonadjacent for any $u \in V(H)$, $\sum_{u \in V(H)} d(u) \leq |V(H)|(|V(H)| - 1) + s|V(H)| + r - s$. So $d(y) \geq n - (|V(H)| - 1) - s - \frac{r - s}{|V(H)|} > |V(L)| - s$ by Claim 6.

Claim 8 There exist no disjoint subgraphs P, C'_2, \ldots, C'_k in L satisfying P is a path joining two vertices in $\{u_1, \ldots, u_s\}$ and $|V(P) \cap \{v_1, \ldots, v_k\}| = 1$, C'_i is a cycle and $|V(C'_i) \cap \{v_1, \ldots, v_k\}| = 1$ for $2 \le i \le k$, and $|V(P) \cup \bigcup_{i=2}^k V(C'_i) \cap U| \ge k-1$.

Proof: Let u_i and u_j be terminal vertices of P. Choose any $v \in N_H(u_i)$. Then there exists $v' \in N_H(u_j) - \{v\}$. Combining a path connecting v and v' in H and P, we get a cycle C_1' . Then all vertices in $V(L) - \bigcup_{i=1}^k V(C_i') - U$ are insertible one by one, because of Claim 7. (Note that $d_L(y) \geq |V(L)| - s + 1 \geq |V(L)| - k + 1 \geq \frac{|V(L)|}{2} + \frac{3k}{2} - k + 1 \geq \frac{1}{2}|V(L)| + \frac{k}{2} + 1$.) This contradicts the maximality of the choice of C_1, \ldots, C_k . (We may miss one vertex in U, but they contain two vertices in H.)

Choose disjoint cycles D_1, \ldots, D_k in L such that $\sum_{i=1}^k |V(D_i)|$ is as small as possible subject to $u_i \in V(D_i), 1 \leq i \leq r$, and $|V(D_i) \cap \{v_1, \ldots, v_k\}| = 1$. We may assume that $v_i \in V(D_i), 1 \leq i \leq k$. Let $L_0 = L - \bigcup_{i=1}^k V(D_i)$.

Claim 9 $N(v_1) \cap \{u_2, \ldots, u_s\} \neq \emptyset$.

Proof: If $N(v_1) \cap \{u_2, \ldots, u_s\} = \emptyset$, then $d(v_1) \leq |V(L)| - 1 - (s-1) = |V(L)| - s$, a contradiction to Claim 7.

Consider the following configuration (we call it a good configuration):

$$1 \le i \le s, 1 \le j \le s, i \ne j$$

$$w \in N_{D_j}(v_i), v_j \in D_j[u_j^+, w^-]$$

$$y = v_j^+ \text{ or } y = v_j^-, y \in D_j[u_j^+, w^-], z \in D_i(v_i, u_i).$$

If $z \in N(v_j)$, we call it a very good configuration. Here and in the following $D_j[u_j^+, w^-]$ will be used as the abbreviation for $V(D_j[u_i^+, w^-])$.

Claim 10 A good configuration always exists.

Proof: Take $v_i = v_1$ and $w = u_j \in N(v_1) \cap \{u_2, \dots, u_s\}$ which are guaranteed by Claim 9. Define the orientation of D_1 so that $D_1(v_1, u_1) \neq \emptyset$.

Now consider a good configuration (if possible, a very good configuration). We may assume that i = 1 and j = 2.

Claim: 11
$$d_{D_1}(z) + d_{D_1}(y) + d_{D_1}(v_2) \le 2|V(D_1)| + 1$$

Proof: $N(y) \cap N(v_2) \cap (V(D_1) - \{u_1, v_1\}) = \emptyset$ (otherwise, we get a disjoint path P connecting u_1 and u_2 through v_1 and a cycle C'_2 through v_2 in $G[V(D_1) \cup V(D_2)]$, contradicting Claim 8).

Note that $d_{D_1[v_1,u_1]}(z)=2$ by the minimality of D_1 . So, $d_{D_1}(z)+d_{D_1}(y)+d_{D_1}(v_2)\leq 2|D_1(u_1,v_1)|+4+|D_1(v_1,u_1)|+2\leq 2|V(D_1)|+1$.

Claim: 12
$$d_{D_2}(z) + d_{D_2}(y) + d_{D_2}(v_2) \le 2|V(D_2)|$$

We have $d_{D_2}(v_2) = 2$ by the minimality of D_2 . Next, $d_{D_2}(z) \le |V(D_2)| - 1$, since $\{y, v_j\} \not\subseteq N(z)$, and $d_{D_2}(y) \le |V(D_2)| - 1$.

Claim: 13
$$d_{D_i}(z) + d_{D_i}(y) + d_{D_i}(v_2) \le 2|V(D_i)| + 2 \text{ for } s+1 \le i \le k$$

Proof: Suppose, $d_{D_i}(z) + d_{D_i}(y) + d_{D_i}(v_2) > 2|V(D_i)| + 2$ for some i. Then $d_{D_i}(z) \geq 3$. Choose $w_1, w_2 \in N_{D_i}(z)$ so that $v_i \in D_i[w_1, w_2)$ and $N(z) \cap D_i(w_1, w_2) = \emptyset$. Since $N(v_2) \cap N(y) \cap D_i(w_2, w_1) = \emptyset$, the claim follows.

Claim:
$$14 \ d_{D_i}(z) + d_{D_i}(y) + d_{D_i}(v_2) \le 2|V(D_i)| + 1 \ for \ 3 \le i \le s$$

Proof: Suppose, $d_{D_i}(z) + d_{D_i}(y) + d_{D_i}(v_2) \ge 2|V(D_i)| + 2$ for some *i*. Choose w_1 and w_2 as in the proof of Claim 13. Then $\{w_1, w_2\} \subseteq N(z) \cap N(y) \cap N(v_2)$ and $|N(w) \cap \{z, y, v_2\}| = 2$ for any $w \in V(D_2) - \{w_1, w_2\}$. In particular, $D_2[w_1, w_2] \subseteq N(y) \cap N(v_2)$ and $D_2[w_2, w_1] \subseteq N(z)$.

CASE 1
$$v_i = w_1$$

Since (v_2, y, w_2) is a triangle, $D_i(w_2, w_1) = \emptyset$. This means that $v_2u_i \in E(G)$ and $yv_i \in E(G)$ which is a very good configuration. By the choice of the configuration, v_2 and z are adjacent. Then (v_2, z, w_2) and (y, v_i, v_i^+) are triangles, which contradicts Claim 8.

CASE 2
$$v_i \neq w_1$$

If $D_i(v_1, w_2) \neq \{v_i\}$, then (v_2, w_2, z, w_1) and (y, v_i, v_i^+) or (y, v_i, v_i^-) are cycles. So $D_i(w_1, w_2) = \{v_i\}$. We may assume that $w_1 \neq u_i$. Then there is a very good configuration. By the choice of the configuration v_2 and z are adjacent. Then (v_2, z, w_2) and (y, v_i, v_i^-) are triangles. This contradicts Claim 8.

Claim 15
$$d_{L_0}(z) + d_{L_0}(y) + d_{L_0}(v_2) \le 2|V(L_0)|$$

Proof: $N(y) \cap N(v_2) \cap L_0 = \emptyset$.

Flaim 16
$$d(z) + d(y) + d(v_2) \ge 2(|V(L)| - s + 1) + 3k - 2$$

Froof: For any $v \in V(H)$ we have $d(v) + d(y) + d(v_2) \ge \sigma_2(G) + \delta(G) \ge n + 3k - 2$. Figure $\sum_{v \in V(H)} d(v) + |V(H)| (d(y) + d(v_2)) \ge |V(H)| (n + 3k - 2)$. Thus $d(y) + d(v_2) \ge n + 3k - 2 - \frac{1}{|V(H)|} \sum_{v \in V(H)} d(v) \ge n + 3k - 2 - (|V(H)| - 1 + s + \frac{r - s}{|V(H)|}) > |V(L)| - s + (3k - 2)$. Therefore, $d(z) + d(y) + d(v_2) \ge 2(|V(L)| - s + 1) + 3k - 2$.

By Claims 11, 12, 13, 14 and 15, $d(z) + d(y) + d(v_2) \le 2|V(D_1)| + 1 + 2|V(D_2)| + \sum_{i=3}^{s} (2|V(D_i)| + 1) + \sum_{i=s+1}^{k} (2|V(D_i)| + 2) + 2|V(L_0)| \le 2|V(L)| + 1 + s - 2 + 2(k - s) \le 2|V(L)| + 2k - s - 1$. By Claim 16, $2|V(L)| + 3k - 2s \le 2|V(L)| + 2k - s - 1$. Hence, $k + 1 \le s$, which is impossible. This completes the proof of Theorem 2.

References

- S. Brandt, G. Chen, R. J. Faudree, R. J. Gould, and L. Lesniak, Degree Conditions for 2-Factors, J. Graph Theory 24 (1997), 165-173.
- [2] G. Chartrand and L. Lesniak, **Graphs and Digraphs**, 3rd ed., Chapman and Hall, London, (1996).
- [3] G. A. Dirac, Some Theorems on Abstract Graphs, Proc. Lond. Math. Soc. 2 (1952), 69-81.
- [4] C. Ore, Hamiltonian connected graphs, J. Math. Pures Appl. 42 (1963), 21-27.

RAPPORTS INTERNES AU LRI - ANNEE 2002

L	Ν°	Nom	Titre	Nbre de pages	Date parution
1	1300	COCKAYNE E J FAVARON O MYNHARDT C M	OPEN IRREDUNDANCE AND MAXIMUM DEGREE IN GRAPHS	15 PAGES	01/2002
1	1301	DENISE A	RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES	81 PAGES	01/2002
. 1	1302	CHEN Y H Datta a k Tixeuil s	STABILIZING INTER-DOMAIN ROUTING IN THE INTERNET	31 PAGES	01/2002
1	303	DIKS K FRAIGNIAUD P KRANAKIS E PELC A	TREE EXPLORATION WITH LITTLE MEMORY	22 PAGES	01/2002
1	304	KEIICHIROU K MARCHE C URBAIN X	TERMINATION OF ASSOCIATIVE-COMMUTATIVE REWRITING USING DEPENDENCY PAIRS CRITERIA	40 PAGES	02/2002
1	305	SHU J XIAO E WENREN K	THE ALGEBRAIC CONNECTIVITY, VERTEX CONNECTIVITY AND EDGE CONNECTIVITY OF GRAPHS	11 PAGES	03/2002
1	306	LI H Shu j	THE PARTITION OF A STRONG TOURNAMENT	13 PAGES	03/2002
1	307	KESNER D	RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES	74 PAGES	03/2002
1	308	FAVARON O HENNING M A	UPPER TOTAL DOMINATION IN CLAW-FREE GRAPHS	14 PAGES	04/2002
1	309	BARRIERE L FLOCCHINI P FRAIGNIAUD P SANTORO N	DISTRIBUTED MOBILE COMPUTING WITH INCOMPARABLE LABELS	16 PAGES	04/2002
1	310	BARRIERE L FLOCCHINI P FRAIGNIAUD P SANTORO N	ELECTING A LEADER AMONG ANONYMOUS MOBILE AGENTS IN ANONYMOUS NETWORKS WITH SENSE-OF-DIRECTION	20 PAGES	04/2002
1	311	BARRIERE L FLOCCHINI P FRAIGNIAUD P SANTORO N	CAPTURE OF AN INTRUDER BY MOBILE AGENTS	16 PAGES	04/2002
1	312	ALLARD G AL AGHA K	ANALYSIS OF THE OSSC MECHANISM IN A NON-SYNCHRONOUS TRANSMISSION ENVIRONMENT	12 PAGES	04/2002
1:	313	FOREST J	A WEAK CALCULUS WITH EXPLICIT OPERATORS FOR PATTERN MATCHING AND SUBSTITUTION	70 PAGES	05/2002
11:	314	COURANT J	STRONG NORMALIZATION WITH SINGLETON TYPES	19 PAGES	05/2002
1:	315	COURANT J	EXPLICIT UNIVERSES FOR THE CALCULUS OF CONSTRUCTIONS	21 PAGES	05/2002
13	316	KOUIDER M LONC Z	STABILITY NUMBER AND (a,b)-FACTORS IN GRAPHS	12 PAGES	05/2002
13	317	URBAIN X	MODULAR AND INCREMENTAL PROOFS OF AC-TERMINATION	20 PAGES	05/2002

RAPPORTS INTERNES AU LRI - ANNEE 2002

N°	Nom	Titre	Nbre de pages	Date parution
1318		A STRATEGY FOR FREE-VARIABLE TABLEAUX FOR VARIANTS OF QUANTIFIED MODAL LOGICS	12 PAGES	05/2002
1319	LESTIENNES G GAUDEL M C	TESTING PROCESSES FROM FORMAL SPECIFICATIONS WITH INPUTS, OUTPUTS AND DATA TYPES	16 PAGES	05/2002
1320	PENT C SPYRATOS N	UTILISATION DES CONTEXTES EN RECHERCHE D'INFORMATIONS	46 PAGES	05/2002
1321	DELORME C SHU J	UPPER BOUNDS ON THE LENGTH OF THE LONGEST INDUCED CYCLE IN GRAPHS	20 PAGES	05/2002
1322	FLANDRIN E LI H Marczyk a Wozniak M	A NOTE ON A GENERALISATION OF ORE'S CONDITION	8 PAGES	05/2002
1323	BACSO G FAVARON O	INDEPENDENCE, IRREDUNDANCE, DEGREES AND CHROMATIC NUMBER IN GRAPHS	8 PAGES	05/2002
1324	DATTA A K GRADINARIU M KENITZKI A B TIXEUIL S	SELF-STABILIZING WORMHOLE ROUTING ON RING NETWORKS	20 PAGES	06/2002
1325	DELAET S HERAULT T JOHNEN C TIXEUIL S	ACTES DE LA JOURNEE RESEAUX ET ALGORITHMES REPARTIS, 20 JUIN 2002	52 PAGES	06/2002
1326	URBAIN X	MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS	32 PAGES	06/2002
1327	JOHNEN C	ANALYZE OF RANDOMIZED SELF-STABILIZING ALGORITHMS UNDER NON-DETERMINISTIC SCHEDULER CLASSES	18 PAGES	06/2002
1328	LI H SHU J	PARTITIONING A STRONG TOURNAMENT INTO	14 PAGES	07/2002
1329	BOUCHERON S	RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES	97 PAGES	08/2002
1330	:	OPTIMIZATION OF SERVICE TIME AND MEMORY SPACE IN A SELF-STABILIZING TOKEN CIRCULATION PROTOCOL ON ANONYMOUS UNIDIRECTIONAL RINGS	21 PAGES	09/2002