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Abstract

There are some results and many conjectures with. conclusion that a graph G
contains all trees of given size k. We prove some new resuits of this type.
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Le but de cette note est d’étudier les graphes contenant tous les arbres de taille
donnée.
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1 Introduction

We shall use standard: graph theory notation. We consider only finite, undi-
rected graphs G = (V, E) of order n = |V| and size e(G) = [E|. All graphs
will be assumed to have neither loops nor multiple edges.

In this note we are interested in graphs which contain all trees of given
size k. There are some results and many conjectures with this conclusion.

"The following simple fact is often referred to as a “folklore lemma’. Usu-
ally, it is presented in the following form:

Theorem 1 Let T be a tree of size k. If (@) > k, then G contains T. MW

The famoust of conjectures of this type is probably the well known Erdés-
Sés conjecture.

Conjecture 2 (Erd("is—Sés) If G is a graph on n vertices and the number
of edges of G is e(G) > ﬁk{—ll then G contains all trees of size at most k.

'The below conjecture was firstly formulated by Loebl in 1995 in the case
k = % and next generalised by Komlés and Sés.

Conjecture 3 (Loebl-Komlés-86s) If G is a graph on n vertices and at
least 3 vertices have degrees at least k, then G contains all trees of size at
most k.

"These two conjectures are still open (for some special cases of them see for
example , [5] as well as (2] and [4] or [1]). Mention that using the Regularity
Lemma, Ajtai, Komldés and Szemerédi proved an approximate form of the
Loebl-Komlés-Sés conjecture (see [3]).

Observe that these two last conjectures can be formulated in the way which
involves degrees of the vertices of the graph. Indeed, by dividing both sides
of the size condition in the Erdd8s-Sés conjecture by n/2 and denoting by
d(G) the average degree of graph G, we get the following statement.

Erd0s-Sés conjecture (degree form) If d(G) > k — 1, then G contains
all trees of size at most .



As remarked in [3}, the Loebl-Komlés-Sés conjecture can be formulated as
follows:

Loebl-Komlés-Sés conjecture (degree form) If the medium degree of
(i is greater than k. then G contains all trees of size at most k.

It seams to be natural to consider other conditions concerning degrees of the
graph. In particular, we may ask if the below conditions imply the existence
of all trees of size & as subgraphs of G.

(1) d(z) + d(y) > 2k for each two nonadjacent vertices of G.

(2) max{d(z),d(y)} > k for each two vertices of G with dist(z,y) = 2.

The above conditions are analogous to well-known conditions from hamil-
tonian problems, namely to the Ore’s condition and the Fan’s condition,
respectively. Observe that the Fan-type condition is weaker than Ore-type
condition. -

The answer in both cases is YES. Actually, we shall prove somewhat stronger
result. In order to formulate it, we need some additional definitions.

For a graph G, we define B = {v € V(@) | dg(v) > &k} and § = V(G) — B.
The vertices of B and .S will be also referred as big vertices and small vertices,
respectively. We denote by N'(x)} the graph induced by small neighbours of
z and called it the small neighbourhood of z i.e.

N'(z) = GIN(z) n S].
We shall consider the following condition:
(*) For each big vertex of G, its small neighbourhood is a clique.
Our main result can be now formulated as follows:

Theorem 4 Let G be a graph of order n having at least one verter of degree
not less than n/2. If (x) holds, then G contains all trees of size at most k.



Corollary 5 If (2) holds, then G contains all trees of size at most k.

Proof. We shall show that the condition (2) implies (). So, suppose
there is a big vertex of G having two nonadjacent small neighbours.. It
suffices to observe that these two small vertices are then of distance two
which contradicts (2). u

Since, as remarked above, condition (2) is weaker than condition (1) we
have also the following corrolary. -

Corollary 6 If (1) holds, then G contains all trees of size at most k. |

2 Proof of the main result

Let G be a graph satisfying the hypothesis of Theorem 4 and let T be a
tree of size k. If T is a subgraph of G we are done. If not, we remove the
pendent vertices of T one by one as long as the tree 7" obtained in this way
is a subgraph of the graph induced by big vertices of G. (Observe, that it
is always possible since G contains at least one big vertex and the graph
induced by this vertex contains K;.) Suppose that 77 has p edges, p < k. By

construction of 7" follows that there are some vertices of 7", say z1,...,%,
which can be considered as the roots of the removed subtrees of 7. Denote
these removed subtrees by 77,..., T, respectively. Of course, we have

q o
(%) e(T' Y=k —p.

=1

Let us consider now the root z, as a vertex of G. By definition of 77, z; is
a big vertex. This implies that it has at least k¥ — p neighbours outside of
T'. All these vertices are small. For, otherwise by adding one edge joining
z1 with its big neighbour outside of 7" we would get a bigger subtree of T
as a subgraph of G[B]. By assumption, the small neighbourhood N'(z;) is
complete in G. We choose arbitrary e(T) vertices in N'(z;). Together with
the vertex z; these vertices form a clique of size e(T") + 1 in which we embed
casily the tree T,

Similarly we proceed with others removed trees. By (x*), it is always
possible, even in the “worst” case when all small neighbourhoods of vertices
x; coincide. This finish the proof of our theorem. ||
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