

PARTITION OF A GRAPH INTO CYCLES AND DEGENERATED CYCLES

ENOMOTO H/LIH

Unité Mixte de Recherche 8623 CNRS-Université Paris Sud-LRI

10/2002

Rapport de Recherche Nº 1337

CNRS – Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650
91405 ORSAY Cedex (France)

Partition of a Graph into Cycles and Degenerated Cycles

Нікоє Епомото

Department of Mathematics Keio University Yokohama, 223-8522, Japan

and

HAO LI*

L.R.I., UMR 8623 du CNRS Bât. 490, Université de Paris-Sud 91405 Orsay, France

Abstract

Let G be a graph of order n and k any positive integer with $k \leq n$. It has been shown by Brandt et al. that if $|G| = n \geq 4k$ and if the degree sum of any pair of nonadjacent vertices is at least n, then G can be partitioned into k cycles. We prove that if the degree sum of any pair of nonadjacent vertices is at least n - k + 1, then G can be partitioned into k subgraphs H_i , $1 \leq i \leq k$, where H_i is a cycle or K_1 or K_2 , except $G = C_5$ and k = 2.

^{*}This author appreciates the invitation of Prof. Saito to visit Japan

1 Introduction

In this paper, we only consider finite undirected graphs without loops and multiple edges. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_G(x)$, and $d_G(x) = |N_G(x)|$ is the degree of x in G. With a slight abuse of notation, for a subgraph H of G and a vertex $x \in V(G) - V(H)$, we also denote $N_H(x) = N_G(x) \cap V(H)$ and $d_H(x) = |N_H(x)|$. For a subset S of V(G), the subgraph induced by S is denoted by $\langle S \rangle$, and $G - S = \langle V(G) - S \rangle$. For a graph G, |V(G)| is the order of G, $\delta(G)$ is the minimum degree of G, and

$$\sigma_2(G) = \min\{d_G(x) + d_G(y) | x, y \in V(G), x \neq y, xy \notin E(G)\}$$

is the minimum degree sum of nonadjacent vertices. (When G is a complete graph, we define $\sigma_2(G) = \infty$.)

In this paper, "disjoint" means "vertex-disjoint," since we only deal with partitions of the vertex set.

Suppose H_1, \dots, H_k are disjoint subgraphs of G such that $V(G) = \bigcup_{i=1}^k V(H_i)$ and H_i is a cycle for all $i, 1 \leq i \leq k$. Then the union of these H_i is a 2-factor of G with k components. A sufficient condition for the existence of a 2-factor with a specified number of components was given by Brandt et al. [1].

Theorem 1 Suppose $|G| = n \ge 4k$ and $\sigma_2(G) \ge n$. Then G can be partitioned into k cycles, that is, G contains k disjoint cycles H_1, \dots, H_k satisfying $V(G) = \bigcup_{i=1}^k V(H_i)$.

In fact the first author pointed out in [4] that Theorem 1 holds for $n \ge 4k-1$ (and this is sharp).

In this paper, we show that weaker conditions than Theorem 1 are suffincient if we regard K_1 and K_2 as degenerated cycles.

Theorem 2 Let G be a graph of order n and k any positive integer with $k \leq n$. If $\sigma_2(G) \geq n - k + 1$, then G can be partitioned into k subgraphs H_i , $1 \leq i \leq k$, where H_i is a cycle or K_1 or K_2 , except $G = C_5$ and k = 2.

Proof: We first have

Claim 1: If G has n-k independent edges or k=1, then there is a desired partition.

Proof: If G has n-k independent edges, by using these edges and the remained individual vertices of G we have a desired partition. If k=1, by Ore 's theorem, either G has a hamiltonian cycle or $G=K_2$ or $G=K_1$. Hence we also have a desired partition.

By Claim 1, we assume $k \geq 2$. On the other hand, we can assume n > k since, for n = k, the trivial partition of V(G) is convenient. When n = k+1, the result is obvious as soon as G has at least one edge, which is the case since $\sigma_2(G) \geq 2$. Suppose n = k+2. Then $\sigma_2(G) \geq 3$ and hence there is some vertex w having two distinct neighbors u and v. If $uv \in E(G)$, G is partitioned into a triangle and n-3=k-1 K_1 's. If $uv \notin E(G)$, one of u and v, say u, has a neighbor $w_1 \in G - \{w, v, u\}$. Then wv and uw_1 are independent edges. Hence we may suppose that $n \geq k+3$. Note that $n \geq 5$, since $k \geq 2$. In the rest of the proof, we use induction on n. That is, we assume that the conclusion is true for all graphs with at most n-1 vertices. We assume that the graph G of order n satisfies the hypothesis of the theorem and has no required partition.

Since $\sigma_2(G) \ge n - k + 1 \ge 4$, G contains a cycle.

Claim 2: There exists a cycle with length at most n - k + 1.

Proof: Suppose to the contrary that there is no such cycle in G. Let C be a shortest cycle. Then $|C| \geq n - k + 2 \geq 5$ and C has no chord. If n - k + 1 = 4, then n = k + 3. Since G has no three independent edges, |C| = 5. If n = 5, this is the exceptional case. Suppose $n \geq 6$. Then there exists some vertex $w \in V(G - C)$. Take any vertex $v \in V(C)$. If $d_G(v) \geq 3$, G contains three independent edges. If $d_G(v) = 2$, v and w are nonadjacent, and $d_G(w) + d_G(v) \geq \sigma_2(G) \geq 4$. So, $d_G(w) > 0$, and again G contains three independent edges.

It follows that $n-k+1 \geq 5$ and there are at least |C|-2 vertices in C that has degree at least 3 and hence has some adjacency in G-C. By the minimality of C, any two vertices do not have a common neighbor in G-C. So there are distinct vertices $u_1, u_2, ..., u_{|C|-2}$ in G-C adjacent to distinct

 $v_1, v_2, ..., v_{|C|-2}$ in C respectively (i.e. $u_i v_i \in E(G)$, $1 \le i \le |C|-2$). This means that there are |C|-2 independent edges. Since $|C|-2 \ge n-k$, the claim follows by Claim 1.

Choose a cycle $C = c_1 c_2 ... c_p c_1$ verifying the following conditions:

- (1) $p \le n k + 1$, and
- (2) subject to (1), C is as long as possible.

We put the induced subgraph $R_1 = G - C$. Then $|R_1| = n - p \ge k - 1$. If $|R_1| = k - 1$, the cycle C and the k - 1 vertices of R_1 give a partition of G. The required partition when $|R_1| = k$ and R_1 contains at least one edge is given by an edge of R_1 , the k - 2 remaining vertices of R_1 and C. When $|R_1| = k$ and R_1 is independent, by the maximality of C any vertex in R_1 has no consecutive neighbors in C and hence any pair of vertices in R_1 have degree sum at most p. But $p \ge \sigma_2(G) \ge n - k + 1$ implies that $|R_1| \le k - 1$. So without loss of generality we assume $|R_1| \ge k + 1$. Then $p \le n - k - 1$.

By the maximality of C, it is clear that every vertex w in R_1 does not have two consecutive neighbors in C and hence $|N_C(w)| \leq \frac{p}{2}$. If $\sigma_2(R_1) \geq |R_1| - (k-1)+1$, then by the induction hypothesis, either R_1 can be partitioned into k-1 subgraphs isomorphic to a cycle or K_1 or K_2 , or $R_1 = C_5$ and k-1=2. In the former case, we have a required partition together with C. In the latter case, let $R_1 = w_1w_2...w_5w_1$. If there is some vertex $c \in C \cap N(w_1)$ then to avoid a required k partition, w_3 is not adjacent to the successor and the second successor of c in C. Since w_1 has no consecutive neighbors in C, we deduce $|C| \geq 2d_C(w_1) + d_C(w_3)$ and similarly $|C| \geq 2d_C(w_3) + d_C(w_1)$. So $n-2 \leq d(w_1) + d(w_3) \leq 4 + \frac{2}{3}|C| = 4 + \frac{2}{3}(n-5)$ and thus $n \leq 8$. This gives that C is a triangle. We get a contradiction to (2). So we may assume that $\sigma_2(R_1) < |R_1| - (k-1) + 1$. Therefore there is a pair of nonadjacent vertices u_1 and u_2 in R_1 such that

$$d_{R_1}(u_1) + d_{R_1}(u_2) \le |R_1| - k + 1 = n - p - k + 1$$

and hence

$$d_C(u_1) + d_C(u_2) \ge \sigma_2(G) - (n-p-k+1) \ge p.$$

Since a vertex of R_1 has at most p/2 neighbors in C,

$$d_C(u_1) = d_C(u_2) = \frac{p}{2}$$
 and $d_{R_1}(u_1) + d_{R_1}(u_2) = n - p - k + 1$.

Assume that $N(u_1) \cap C = \{c_1, c_3, c_5, ..., c_{p-1}\}$. Let $H = \{w \in R_1 \mid N(w) \cap C = \{c_1, c_3, c_5, ..., c_{p-1}\}\}$ and $R_2 = R_1 - H$.

Claim 3: If a vertex x in R_2 has at least one neighbor in $H \cup \{c_2, c_4, c_6, ..., c_p\}$, then $|N(x) \cap (H \cup C)| = 1$.

Proof: If the claim is false $(i.e. |N(x) \cap (H \cup C)| \ge 2)$, it is easy to get a cycle of length |C|+1 or |C|+2 which is impossible because of the maximality hypothesis of C and $|R_1| \ge k+1$.

This implies that $u_2 \in H$.

Claim 4: $H \cup \{c_2, c_4, c_6, ..., c_p\}$ is independent.

Proof: If there is an edge between two vertices in $H \cup \{c_2, c_4, c_6, ..., c_p\}$, then we can easily get a cycle of length |C| + 1 which is a contradiction.

Claim 5: $|H| \le k - 1$. And if |H| = k - 1, then $d_{R_1}(u_1) + d_{R_1}(u_2) = |R_2|$.

Proof: Since $u_1, u_2 \in H$, by Claims 3 and 4,

$$n-k+1=d(u_1)+d(u_2)=p+d_{R_1}(u_1)+d_{R_1}(u_2)\leq p+|R_2|=n-|H|.$$

We deduce that $|H| \leq k-1$ and and if |H| = k-1, then $d_{R_1}(u_1) + d_{R_1}(u_2) = |R_2|$.

Note that $|R_2| = |R_1| - |H| \ge k + 1 - |H| \ge 2$. If there is a pair of nonadjacent vertices u_3 and u_4 in R_2 such that

$$d_{R_2}(u_3) + d_{R_2}(u_4) \le |R_2| - (k - 1 - |H|) = n - p - k + 1,$$

then

$$d_{C \cup H}(u_3) + d_{C \cup H}(u_4) \ge \sigma_2(G) - (n - p - k + 1) \ge p.$$

By Claim 3, it gives that $d_{C \cup H}(u_3) = d_{C \cup H}(u_4) = \frac{p}{2}$. By Claim 3 again and the maximality of C, we deduce that $N(u_3) \cap C = N(u_4) \cap C = \{c_1, c_3, c_5, ..., c_{p-1}\}$, contrary to the definition of H. It follows that $\sigma_2(R_2) \ge |R_2| - (k-1-|H|) + 1$.

Suppose $|H| \leq k-2$. By the induction hypothesis, either R_2 can be partitioned into k-1-|H| subgraphs isomorphic to a cycle or a degenerated cycle, or $R_2 = C_5$ and k-1-|H| = 2. In the first case, together with C and the individual vertices in H, we have a required partition of G. Therefore $R_2 = C_5$ and k-1-|H| = 2. Put $C_2 = c_1u_1c_5c_6...c_pc_1$. Then R_2 , C_2 , c_2c_3 , c_4 and the vertices in $H - \{u_1\}$ give a partition of 4 + |H| - 1 = k required subgraphs of G. So we have |H| = k - 1.

Since $\sigma_2(R_2) \geq |R_2| + 1$ and $|R_2| \geq 2$, R_2 is hamiltonian or $R_2 = K_2$. Let $C_3 = x_1x_2...x_qx_1$ be a hamiltonian cycle of R_2 or $C_3 = x_1x_2$. When u_1 has two consecutive neighbors in C_3 , by adding u_1 between these two neighbors, we get a cycle C_3' and we have a partition with C, C_3' and the k-2 vertices in $H-\{u_1\}$. So u_1 (similarly for u_2) has no consecutive neighbors in C_3 . By Claims 3 and 5, there are consecutive vertices x_i, x_{i+1} such that, without loss of generality, $x_iu_1, x_{i+1}u_2 \in E(G)$. Put $C_4 = c_1u_2x_{i+1}x_{i+2}...x_1x_2...x_iu_1c_5c_6...c_pc_1$. Then C_4 , the edge c_3c_4 and the |H|-1 independent vertices of $(H \cup \{c_2\}) - \{u_1, u_2\}$ give a required partition of G.

The proof of the theorem is complete.

References

[1] S.Brandt, G.Chen, R.Faudree, R.J.Gould and L.Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173.

- [2] G. Chartrand, L. Lesniak, *Graphs & Digraphs* (third edition), Chapman & Hall, London, 1996.
- [3] Y.Egawa, R.J.Faudree, E.Győri, Y.Ishigami, R.H.Schelp and H.Wang, Vertex-disjoint cycles containing specified edges, Graphs and Combinatorics, 16 (2000). 81-92.
- [4] H.Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998) pp. 487-492.

RAPPORTS INTERNES AU LRI - ANNEE 2002

N°	Nom	Titre	Nbre de pages	Date parution
1300	COCKAYNE E J FAVARON O MYNHARDT C M	OPEN IRREDUNDANCE AND MAXIMUM DEGREE IN GRAPHS	15 PAGES	01/2002
1301	DENISE A	PAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES	81 PAGES	. 01/2002
1302	CHEN Y H DATTA A K TIXEUIL S	STABILIZING INTER-DOMAIN ROUTING IN THE INTERNET	31 PAGES	01/2002
1303	DIKS K FRAIGNIAUD P KRANAKIS E PELC A	TREE EXPLORATION WITH LITTLE MEMORY	22 PAGES	01/2002
1304	KEIICHIROU K Marche C Urbain X	TERMINATION OF ASSOCIATIVE-COMMUTATIVE REWRITING USING DEPENDENCY PAIRS CRITERIA	40 PAGES	02/2002
1305	SHU J XIAO E WENREN K	THE ALGEBRAIC CONNECTIVITY, VERTEX CONNECTIVITY AND EDGE CONNECTIVITY OF GRAPHS	11 PAGES	03/2002
1306	LI H SHU J	THE PARTITION OF A STRONG TOURNAMENT	13 PAGES	03/2002
1307	KESNER D	RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES	74 PAGES	03/2002
1308	FAVARON O HENNING M A	UPPER TOTAL DOMINATION IN CLAW-FREE GRAPHS	14 PAGES	04/2002
1309	BARRIERE L FLOCCHINI P FRAIGNIAUD P SANTORO N	DISTRIBUTED MOBILE COMPUTING WITH INCOMPARABLE LABELS	16 PAGES	04/2002
1310	BARRIERE L FLOCCHINI P FRAIGNIAUD P SANTORO N	ELECTING A LEADER AMONG ANONYMOUS MOBILE AGENTS IN ANONYMOUS NETWORKS WITH SENSE-OF-DIRECTION	20 PAGES	04/2002
1311	BARRIERE L FLOCCHINI P FRAIGNIAUD P SANTORO N	CAPTURE OF AN INTRUDER BY MOBILE AGENTS	16 PAGES	04/2002
1312	ALLARD G AL AGHA K	ANALYSIS OF THE OSSC MECHANISM IN A NON-SYNCHRONOUS TRANSMISSION ENVIRONMENT	12 PAGES	04/2002
1313	FOREST J	A WEAK CALCULUS WITH EXPLICIT OPERATORS FOR PATTERN MATCHING AND SUBSTITUTION	70 PAGES	05/2002
1314	COURANT J	STRONG NORMALIZATION WITH SINGLETON TYPES	19 PAGES	05/2002
1315	COURANT J	EXPLICIT UNIVERSES FOR THE CALCULUS OF CONSTRUCTIONS	21 PAGES	05/2002
1316	KOUIDER M LONC Z	STABILITY NUMBER AND (a,b)-FACTORS IN GRAPHS	12 PAGES	05/2002
1317		MODULAR AND INCREMENTAL PROOFS OF AC-TERMINATION	20 PAGES	05/2002

RAPPORTS INTERNES AU LRI - ANNEE 2002

N.	Nom	Titre	Nbre de	Date parution
1318	THION V	A STRATEGY FOR FREE-VARIABLE TABLEAUX FOR VARIANTS OF QUANTIFIED MODAL LOGICS	pages 12 PAGES	05/2002
1319	LESTIENNES G GAUDEL M C	TESTING PROCESSES FROM FORMAL SPECIFICATIONS WITH INPUTS, OUTPUTS AND DATA TYPES	16 PAGES	05/2002
1320	PENT C SPYRATOS N	UTILISATION DES CONTEXTES EN RECHERCHE D'INFORMATIONS	46 PAGES	05/2002
1321	DELORME C SHU J	UPPER BOUNDS ON THE LENGTH OF THE LONGEST INDUCED CYCLE IN GRAPHS	20 PAGES	05/2002
1322	FLANDRIN E LI H Marczyk a Wozniak M	A NOTE ON A GENERALISATION OF ORE'S CONDITION	. 8 PAGES	05/2002
1323	BACSO G FAVARON O	INDEPENDENCE, IRREDUNDANCE, DEGREES AND CHROMATIC NUMBER IN GRAPHS	8 PAGES	05/2002
1324	DATTA A K GRADINARIU M KENITZKI A B TIXEUIL S	SELF-STABILIZING WORMHOLE ROUTING ON RING NETWORKS	20 PAGES	06/2002
1325	DELAET S HERAULT T JOHNEN C TIXEUIL S	ACTES DE LA JOURNEE RESEAUX ET ALGORITHMES REPARTIS, 20 JUIN 2002	52 PAGES	06/2002
1326	URBAIN X	MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS	32 PAGES	06/2002
1327	BEAUQUIER J JOHNEN C	ANALYZE OF RANDOMIZED SELF-STABILIZING ALGORITHMS UNDER NON-DETERMINISTIC SCHEDULER CLASSES	18 PAGES	06/2002
1328	TI H	PARTITIONING A STRONG TOURNAMENT INTO K CYCLES	14 PAGES	07/2002
1329	BOUCHERON S	RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES	97 PAGES	08/2002
330		OPTIMIZATION OF SERVICE TIME AND MEMORY SPACE IN A SELF-STABILIZING TOKEN CIRCULATION PROTOCOL ON ANONYMOUS UNIDIRECTIONAL RINGS	21 PAGES	09/2002