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Abstract

This paper contains two principal results. The first proves that any graph G can be given
a balanced proper edge coloring by k colors for any k > x/(G). Here balanced means that the
number of vertices incident with any set of d colors is essentially fixed for each d, that is, for
two different d-sets of colors the number of vertices incident with each of them can differ by
at most 2. The second result gives upper bounds for the vertex-distinguishing edge chromatic
number of graphs G with few vertices of low degree. In particular, it proves a conjecture of
Burris and Schelp [6] in the case when A(G) > +/2]V(GY +4 and §(G) > 5

1 Introduction

Let &G be a simple graph. For d > 0 write V; for the set of vertices in G of degree d and ng = |V}
for the number of these vertices. Let x'(G) be the minimum number of colors required in a proper
edge-coloring of G. By Vizing’s Theorem, A(G) < ¥/'(G) < A(G) + 1. If we have such a proper
coloring with colors {1,...,k} and v is a vertex of G, denote by S(v) the set of colors used to
color the edges incident with ». For any subset § C {1,...,k}, write V5 = {v : S(v) = S} for the
set of vertices for which S{v) = 5 and ng = [Vg| for the number of these vertlces

A proper edge coloring of a graph is said to be vertez-distinguishing if each pair of vertices is
incident with a different set of colors. In other words, if ng < 1 for-all § C {1,...,k}. A vertex-
distinguishing proper edge coloring will also be called a strong colormg A gra.ph has a strong
coloring if and only if it has no more than one isolated vertex and no isolated edges. Such a graph
will be referred to as a vdec-graph. The minimum number of colors required for a strong coloring
of a vdec-graph G will be denoted x.(G).
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The concept of vertex-distinguishing colorings has been considered in several papers (see [1-10]).
In [6] Burris and Schelp made the following conjectures:

Conjecture 1 If G is o vdec-graph, then x\(G) < |[V(G)| +1.

Conjecture 2 Let G be o vdec-graph and let k be the minimum integer such that. ( ) > ng for all
d with 6(G) < d < A(G). Then x'(G) =k or k+ 1.

Recently Bazgan, Harkat-Benhamdine, Li and Wo#niak [4] have proved conjecture 1 and Balister,
Bollobés and Schelp [3] have proved conjecture 2 when @ is a union of cycles or a union of paths.

This paper contains two principal results. The first extends the ideas in a coloring lemma that
appears in [4] to prove that any graph G can be given a balanced proper edge coloring by & colors
for any k > x'(G) (Theorem 1). Balanced colorings are those proper edge colorings of a graph
by k colors where |ng — ng/| < 2 for all subsets S, S’ of colors for which |S| = |$|. R. Gould,
M. Karonski and F. Pfender informed us that they also proved Theorem 1 in the case of d-regular
graphs on n vertices when the number & of colors satisfies the inequality ( d) < n. In this case the
conclusion is equivalent to ng < 2 for all S.

The second principal result (Theorem 10) gives good upper bounds on x’,(G) when there are not
too many vertices of low degree. As a corollary, this proves conjecture 2 above when §(G) > 5

and A(G) > 1/2[V(G)| + 4 (Corollary 12).

If a strong coloring of G exists with % colors then clearly ( ) > ng. Hence in conjecture 2 we
certainly have x{(G) 2 k. In fact there are many graphs for which x,(G) > k+1. As an example,
consider a d-regular graph on n = ( d) vertices. Such graphs exist provided dn is even. If a strong
coloring with & colors exists, then there must be exactly ( _1) vertices incident with any given
color ¢. However, each edge colored with ¢ is incident with two vertices, so this number must be
even. There are many pairs (d, k) for which d(’;) is even but (g:{) is odd (for example if & is a
power of 2 and d is arbitrary). For these, the graph will need at least & + 1 colors.

A similar parity argument shows that there are many graphs G for which x,(G) = |V(G)| + 1 in
Conjecture 1. Take & = n to be even and G to be K, with r edges removed where r < n/6. Every
vertex in V1 must miss a distinct color, so there are n,,_; colors which are used on at most n./2—1
edges each. The other colors may be used on at most n/2 edges. Hence |E(G)| < n?/2.— np_1.
However n —nq_; < 2r, s0 [E(G)| £ (3) —n/2+2r. But |[B(G)| = (3) —r,s0 r > n/2 — 2r
contradicting our assumption that r < n/6. ‘

2 Optimal Edge Colorings

Define an optimal k-coloring of G to be a proper edge coloring of G with % colors with minimal
value of 34 n%. Optimal colorings clearly exist whenever k& > ¥/(G).

Since ) ns = |V((G)] is fixed, minimizing Y n% amounts to reducing the “variance” of ng. In
particular, if two values of ng are brought closer together (keeping their sum fixed), then 3 n%
decreases. We will prove that every optimal coloring is balanced.



Theorem 1 In any optimal k-coloring of G’., |ng —ng| <2 forall 8,9 C{1,...,k} with |S]| =
|57

If t1, t7 are integers with (¢7 + 1) By -1<ng< (tF = 1)(") + 1 then Theorem 1 implies that
in any optimal k-coloring and for any S with |S| = d we have t; <ng < t;‘. To see this, assume
some ng > €1, then ng = 2|8 j=a Ms" = N5 + () - Dms ~2) 2 (& - 1) (2) + 2. A similar
argument shows ng > t7. In particular, if ng < (ﬁ) + 1 for all d then ng < 2 for all S.

For S.. C 84 C {1,...,k}, define [S_,5,] = {S: S_ C § C S;}. As a special case, if a,b €
{1,...,k} define [a,5] = [{a}, {1,...,k} \ {b}] to be the subsets of {1,...,k} containing a but not
b. We shall also write [a{b] = [a,b] U [b,&] for the collection of sets containing precisely one of a
and b. Define an involution i, on subsets of {1,,..,%} by interchanging the colors a and b.

If T is a collection of subsets of {1,...,k}, write 74 for the sets in 7 of size d. Also write
Vr=UserVsandnyr =3 ser ns for the set of and number of vertices with S(v) € T respectively.

Assume we have a proper edge-coloring of G and let a,b € {1,...,k}. An (a,b)-Kempe path is a
maximal path in G consisting only of edges colored with either a or b. The endvertices of an (a, b)-
Kempe path lie in V5o and we can define a perfect matching K on Viaos) by setting uv € E(K)
whenever there exists an (a, b)-Kempe path with endvertices u and v.

We now make the following key observation. If uv € E(K) then we can swap the colors a and b
along the Kempe path between u and v. The result will be a new proper coloring with the same
color sets S(w) for all w # u,v. The only color sets to change are S(u) and S(v) which both
change by swapping the colors @ and . In other words S{u) and S(v) will be changed to i43(u)
and iq5:5(v) respectively.

Let Gy be the graph with vertex set equal to the set of all subsets S of {1,...,%k}. The edges of
Gy comsist of all pairs S5 with |S| = |§| and § and §’ differing by the change of one color. In
other words, S # S and S’ = 14,5 for some a and b. The graph Gy, is the vertex-disjoint union
of the connected subgraphs G}, 4 consisting of the subsets of size d. If |S| = |5"|, write d(S5, §) for
the distance between § and §' in G;. We shall often consider [S.., S, ] to be an induced subgraph
of Gy. It is worth noting that [S., 5] is isomorphic to &, and [S_, 5], is isomorphic to G
where r = |54 [ — |S_| and s = d — |S_|. In particular, [S_, 54|, is connected (if non-empty).

Imagine the vertices of G as the squares on a board and the vertices v of G as “pieces” placed
on the squares S{v) of this board. The edges of G}, are the valid “moves” we can make in a game
based on interchanging colors in Kempe paths. If we move a piece u from S to 7,5, then our
“opponent” moves a piece v from S’ to 7,5, where § = S(u), &' = S(v) and u and v are the
endpoints of an (a, b)-Kempe path. We will generally regard the pieces on the board as being
indistingnishable, and will not concern ourselves if two pieces are swapped.

Lemma 2 Assume we have an optimal k-coloring of G and 8 € [a{b]. Then we can change the
coloring by interchanging a and b on some edges so that we get a new optimal coloring in which
the values of ng and n;,,s are interchanged. Also every other ng remains the same, except in the
case when ng and n; g differ by one, in which case exactly one other pair ngi and Ny, s (differing



by one) is interchanged. Also, we can make each pair {9, 1,35} lead to a different pair {S',4455"}.
It is not possible for ng and n;_, 5 to differ by more than two.

Proof.  Construct a partial matching J on Vj,¢4 as follows. For each § € [a<>b] matkch as many
vertices in Vs with those of V;_, 5 as possible. The partial matching J will just be the union of
all these partial matchings. Note that if » is unmatched by J then TS(w) > MigpS(u)- A8 above we
define the matching K so that wv € B(K) when u and v are endvertices of an (a, b)-Kempe path.
In terms of the board game, J and K determine the strategy used by us and our opponent
respectively. If we move a piece u then our opponent moves v with wv € E(K). If our opponent
moves v then we move w where vw € E(J). We stop when we hit an unmatched vertex. Every
move by our opponent corresponds to interchanging the coloring along some (a, b)-Kempe path.
We now consider the effect of all these moves.

The union J U K i a multigraph on V(@) with maximum degree two. Start with a vertex
vg € V]aop) Which is not in the partial matching J (and hence is of degree one in J U K). For each
¢ 2 0, change the coloring of the Kempe path from vo; to vz;41 25 above where vs;.1 is defined so
that veugir1 € E(K). If woiyq occurs in the matching J define vaspe 50 that vgrivzire € B(J)
then repeat this process with ¢ replaced with ¢ + 1. Since J U K is a union of paths and cycles
(and double edges) and we started at a degree one vertex, we must terminate at a vertex v, # vy
which is not in the partial matching J.

Now consider the change in ng for each S. It is clear that whenever we change the colormg
along the Kempe path with endvertices va;, vg;41, we change S(vq;) and S(vait1) 0 i35 (ve;) and
tabS(v2i41) respectively. However, S{(vait1) = 4455(vas42), %0 the only ng to change are TS (vg)s
TG (wy)s MigyS(uo) 0 T, 5(5,). Since distinet starting points of paths lead to distinct endpoints of
paths in JU K, each vy corresponds to a distinct v,, (although the correspondence between vy and
v, depends on our choice of J). It is worth noting that this process is symmetric in vg and v,; if
we had started with v we would have ended with vy.

Now assume the coloring is optimal. If ng = n,,s then there is nothing to prove, so assume
ng > ny,s. Since ng > n;,, g, there must be a vertex vy with S(vp) = § and vy not in the partial
matching J. Applying the algorithm above gives us a change of coloring which changes only ng,
NS, Nig,s and ng, o where 8’ = S{v,.) and ng > n; , o (since v, is not in the partial matching J).
In particular § # i,3,5". _ ' :
Asgsume first that S # 5. Then ng and ngr decrease by one-and N4,y and n; s increase by one.
If either ng > ny,,5+2 or ngr > m; , o +2 then 3 n?g is reduced, contradicting optimality. Hence
ng = N,,5 + 1 and ng = n,,, 5 +1 and both pairs are interchanged. Different pairs {5, 1,55} give
different pairs {5’,i455"} since only one vertex in Vg or Vg is unmatched by J. Note also that
the new coloring is still optimal since it has the same value of } nZ.

Now assume S = §’, so that ng is decreased by two and hiabs is increased by two. Hence there
are two vertices in Vg unmatched by J and so ng > ni,s +2. If ng > ny,s + 2 then En% is
decreased contradicting optimality, otherwise ng = n,;_,g + 2 and the two values ng and n;_, s are
.interchanged. All other ng are unaffected. Once again, the coloring remains optimal. O

Note that the pairing {5, {,45} to {57,445’} in Lemma 2 depends on the choice of J. However,
for any fixed choice of J we get a matching on the set of all pairs {9,1,,5} with [ng — n;_,5] = 1.

iFrom now on we shall simplify the game analogy by assuming all the intermediate moves in

4.



Lemma, 2 are taken for granted. The moves of the game now correspond to swapping ng and n;_, 5
with our opponent only allowed to move if |ng — ni,,5| = 1. In this case he swaps some other pair
ng and n; o with |ng — n’iabs’l = 1.

Proaf.  (Of Theorem 1)

Suppose the theorem is false. Among all optimal k-colorings and sets Sy, Sy with |Sy| = [Sa|,
ng; 2 ng, + 3, pick an optimal coloring and sets Sy, Sy with S; and S5 as close as possible
in Gy. Let d = |81] = |52, S =8NS and S+ = 8§ U S, so that S1,5; € [S.,5], and
Sy = 51 A (84 \ 5_). Forall 8,8 € [S.,8¢],, d(S,5) = LS A S, s0if § # 81,5 then the
distances d(S, 51) and d(S, S3) are strictly less than d(S;, S3). Hence by minimality of d(S1, Sz)
we have ng, > ng > ng,. Assume a € Sy, a ¢ 9. Using Lemma 2 we can swap ng, with any
neighboring ng, that is any ng with 518 € E(Gy). If S € [S_ U {a},S.]; then S is closer to Ss
than S, so by minimality of d(Sy, S2)}, ns, must also be swapped with the neighboring ng with
8'=SA(S:\5-) € [8,5:\ {a}],- In particular |ng —ng,| = 1. For any S € [~ U {a}, S4]; with
8 # 81, we can move ng, along a path between them in [S_ U{a},S+], (which is a connected
subgraph of Gy) and eventually swap ng, with ng. Since our opponent is always making moves
in [8,54 \ {a}];, ns is unaffected by any of these moves. However swapping ng, with ng must
also cause our opponent to move Sz, so |ng — ng,| = 1 by Lemma 2. Since any S-# S» is in
[S- U {a}, 84}, for some a, this argument applies for all § # Si,S2. A similar argument shows
that |ng — ng,| = 1 for any S # 53, 83. Hence no such S exists and [S_, 5], = {S},S2}. In this
case 57 and S are neighbors in Gy and |ng, — ng,| > 2, contradicting Lemma 2. O

3 Distinguishing Vertices

Our aim is to produce vertex-distinguishing colorings of arbitrary graphs. First however, we need
some technical results to recolor subgraphs of G in such a way that certain pairs of vertices see
distinct color sets.

Lemxma 3 Let G be a union of cycles and M a partial matching on V(G) which does not match
at least one vertex on each odd cycle. Then there exists a proper edge coloring of G with four
colors such that S(u) # S(v) whenever uv € E(M). If G contains no component 6-cycle in which
all pairs of opposite vertices are matched by M, then three colors are sufficient.

Proof.  For each component 6-cycle vy,...vs of G with opposite vertices matched, remove vy
and wvews and add vivg to F(M). If we can color the resulting graph with three colors, then we -
can color the original by recoloring vyve with the fourth color. Hence the first part follows from
the second.

If there is a cycle v1,...,v,, r > 4 with two adjacent vertices matched, say viv, € E(M), identify
the vertices v, and », and color the remaining graph with v; = v, unmatched. We can then color
the original graph by giving edge v;v, the color different to those of v1vs and vev,_y (which are
distinct). If r = 3 then we can just remove viv, = v1v3 from the matching, since v1vs and vzvy
automaticaily have distinct colors in any proper coloring. Hence we are reduced to proving the
result when no adjacent vertices are matched by M.



We color each cycle in turn. Suppose we have already colored some cycles and the next cycle to
be colored is vy, ..., v.. Let u; be the vertex matched by M to v; (when it exists). We will call v;
restricted if u; exists and both edges adjacent to u; have already been colored. Otherwise call v
unrestricted.

Assume first that v1 is not matched to another vertex in ¥1,...,Yr. If ¥1 Or v, is unrestricted or
if S(u1) # S{ur) then we shall color the cycle as follows. Pick some color ¢ in § (uwr) ({1,2,3} i
vy unrestricted) but not in S(u1) (@ if v, unrestricted). If v; and v, are both restricted then by
assumption S(ui) # S(ug) and |S(u1)] = |S(ug)| = 2 so such a color exists. Color vivs with a.
This will guarantee S{v1) # S(u1) in any final coloring if vy is restricted. Now color each edge
around the cycle in turn so that the coloring is proper and ${v;) # S(u;) when v; is restricted.
At each stage, two of the three colors will make the coloring proper and we need to avoid at most
one of these to ensure S(v;) # S(u;). It is possible that u, may be on the current cycle (ur = v
for some 7). If this happens, make sure that the edge v;v;41 is colored so that a € S(v;). This is
possible since v; = u, is unrestricted when we color V341 and so we can color v;v;1; with ¢ when
i—1%; is not colored with a. Now assume we have colored all the edges except the last one vyvq. If
vr is restricted then o € S(uy). Color v,v1 with any color not equal to a, distinct from the color of
Ur—1vr and so that S(v,) # S(u,). Since a € S(u,), one of these last two conditions is redundant
and so such a color always exists. We now have a suitable coloring of the whole cycle.

If all the v; are restricted and all the S(u;) are the same, say S(u;) = {a,b}, then there are no
unmatched vertices in the cycle and so the cycle length is even. Color the edges of the cycle
alternately a and ¢ where ¢ # a, b.

Now we may assume all the vertices v; are matched by M with other vertices on the same cycle.
Let [ > 0 be the minimum value such that vv;y; € E(M) for some i (where we consider i + { as
defined mod r). Assume first that I < 7/2. Not every v; can be matched with v;,; since then v,
would be matched to both vg = v, and ve; # vp. By cyclically permuting the numbering, we can
assume viv1+; € E(M) but v,v; ¢ E(M). Since v, must be matched to some v, we must have
vrvs € E(M) and s > I + 1 by minimality of I.

Color wvg with color 1, and proceed to color each edge in turn as before. By minimality of I, all
the v; with 1 < ¢ <! are matched with v; with 7 > [ and hence are unrestricted when we color
V3Ui41. Since [ > 1 we can color the edges vavs, . .. » V41 80 that vy, is colored with color 2.
Now color vyy1v49 with color 3 (so 1 ¢ S(v.1)). Now proceed with the remaining edges as
before. When we reach u, = v, color v4vs.1 so that 1 € S(u,) {possible since v, is unrestricted).
Continue until we have colored every edge except v,v1. As before, we can color v,v; with a color
‘other than 1 since 1 € S(u;). 'Also S(u1) # S(v1) since 1 ¢ S{v1), 1 € §(v1), so we are done.
Finally, if each v; is matched to v;; and [ = r/2, then we assume r # 6. If r = 0 mod 4, color the
edges 1,2,1,2,1...,2 for the first half of the cycle from v to vi+1 and then 1,3,1,3,1,...,3 for
the other half going from vy 1 to v1. If 7 = 2 mod 4 and r > 10, color them 1,2,3,1,2,1,2,1,...,2
for the first half of the cycle and then 1,3,1,2,3,1,3,1,...,3 for the other half. . O

Corollary 4 Assume G has a proper edge coloring with two colors. Assume also that ~ is an
equivalence relation on V(G) such that u ~ v and S{u) = S(v) implies |S(u)| = 2 and no
equivalence class of ~ has more than two elements of degree 5. Then there exists a proper 4-
coloring with S(u) # 8(v) for all u ~v. Also, if G does not contain a 6-cycle in which u ~ v for
all diagonal pairs, then three colors are sufficient.




Procf.  Since G has a proper 2-coloring, A(G) < 2 and G is a union of paths and even cycles.
Without loss of generality, we can assume v ~ v implies that 4 and v have the same degree and
that if this degree is one then u and v are not endvertices of the same path of length 2 (in both
thes: cases S(u) # S(v) is automatic in any proper coloring). Note that any ~-equivalence class .
containg at most two vertices, so ~ is a partial matching on V(G). If u ~ v and » and v are of
degree 1, identify v and v. Any proper coloring of the resultant graph will give a coloring of G
in which S{u) # S(v). The original 2-coloring is still proper on the graph with u and v identified
since §(u) # S(v) in the original coloring with two colors. Finally, if P is a path with endpoints
not related to anything by ~, we can enlarge P to an even cycle by adding new vertices and edges
(with any new vertices unrelated to any other vertex by ~). Applying Lemma 3 to the resulting
union of even cycles and removing any added vertices and edges gives the result. O

Lemma 5 Let H be a 6-cycle v1,. .. ,ve with sit extra vertices ui,...,us and edges viu;. Assume .
viu; are colored with colors in {1,2,3,4} and the color of vyu; is distinct from the color of vipauirs -
for i =1,2,3. Then we can extend this coloring to a proper edge coloring of H so that S{v;) #
S{viqs) for i = 1,2,3. In addition, we can remove some or all of the pairs u;, u;.3 and replace
them with edges viv;ys (initially uncolored) and the result still holds.

Proof.  The proof is a case by case check (and was verified by computer). Indeed, the only
coloring sequences on the edges w;u; which do not lead to a suitable coloring of H are those
isomorphic under cyclic permutations, reflections and interchange of colors to one of the sequences
111111, 112112, 112113 and 112122. Each of these has a pair of opposite edges colored with the
same color. The following table gives suitable colorings of the hexagon in the other cases. The
subscripts denote the colors of the edges v;v;..1 between the corresponding edges v;u; and v;1 %1
For {he second part of the lemma, we can assume that a diagonal u;us,3 i8 equivalent to v;u; and
viy3tii4-3 colored with the same color. Since we can choose this coler arbitrarily, we can avoid the
four special cases above. :

3121314151423
213121421243,
3151423143143
2141321323149
2132412342132

3lol314132425
3121514213423
4121423243134
3121324324423
214231231234

2131214132432
2131213243142
3121321243143
3142314231423

2142314324139

Uq .

3lal314231425
2131423142139
2131421342139
2142314231439
2132134132437

2131214231432
3121423143123
213142134234,
2132413243149
2132132142142

3121314212425
4121423123134
3121421343123
2132412341345

Example: COlOI'ing 2142314324132.



Theorem 6 Assume G has a proper edge coloring with three colors. Assume also that ~ s
- an eguivalence relation on V(G) such that u ~ v and S(u) = S(v) implies |S(u)| = 3 and no
equivalence class of ~ contains more than two vertices of degree 3. Then there ezists a proper
4-coloring with S(u) # S(v) for all u ~ v.

Proof.  Assume G is colored with the three colors {1,2,4}, We may assume without loss of
generality that v ~ v implies |S(u)| = |S(v)|. As a consequence, ~-equivalence classes of vertices

of degrees 0, 1, 2 and 3 can contain at most 1, 3, 3 and 2 vertices respectively. We define a bad
hezagon to be a 6-cycle vq,...,vs in G which is colored alternately 1 and 2 and for which opposite

vertices are equivalent under ~.. In this case, each v; is of degree 3 and is adjacent to some vertex

u; with vyu; colored with 4. If & is a bad hexagon, write the vertices of i as V' (h) = {v},..., 1}

and the vertices adjacent to b as U(h) = {u?,...,ult}. Note that any two bad hexagons are
vertex-disjoint,

Let U = (UpU(h)) \ (UnV'(h)) be the set of all vertices adjacent to bad hexagons but which are
not in any bad hexagon themselves. Since 4 € S(u) for all u € U, the restriction of ~ to U is a
partial matching (no three subsets of {1,2,4} containing 4 have the same size).

Define the subgraph G' of G by removing the edges E(h) of all the bad hexagons from G and
define the relation ~' by removing all ~-equivalences on the vertices V() of all the bad hexagons.
Now the v € V(h) are all unmatched vertices of degree 1. If we also remove all the edges colored 4,
the resulting graph G" and relation ~' satisfy the conditions of Corollary 4 with no bad hexagons.
Hence G can be recolored with {1,2,3} so that u ~' v implies S(u) # S(v) in G". If we
- add back the edges colored with 4 we get a proper 4-coloring of G’ in which u ~' v implies
S(u) \ {4} # S(v) \ {4} and hence S(u) # S(v). This however is not the only such 4-coloring on
G'.

For each vertex v € U, let e, = vu be the (unique} edge joining u to a bad hexagon. This edge is
colored 4 in the above coloring of . We shall show that we can recolor it with some other color
so that G is still properly colored and u ~' u' still implies S(u) # S(u').

If w has degree 1, then it is ~'-related to at most two other vertices in G'. Hence there is a color
ky # 4 which can be used to color e, so that the S{u) # S(w’) when u ~ &/. The other endvertex
of e, is an unmatched vertex of degree 1, so imposes no restriction on the coloring of e,,. Similarly,
if the degree of u in G” is 2 then it is related to at most one vertex v with 4 ¢ S(v). This is because
in the original coloring of G there is only one subset of {1,2, 4} of size two not containing 4. We
can therefore recolor e, with some color &, € {1, 2,3} so that $(u) # S(«’) when u ~' »' and the
coloring is still proper at . Finally, if » is of degree 3, then it is ~'-related to at most one other
vertex u'. In the original coloring S(u') = {1,2,4} so 4 € §(x/) in the G’ coloring. Hence we can
recolor e, with ky, € {1,2,3} \ S(u) so that the coloring is still proper and S{u) # S(u').

Given any subset U’ C U of vertices of U/ which does not contain any pair of ~'-related elements,
then we can recolor all the edges ey, u € U’ with k, simultaneously. As long as we do not recolor
both e, and eyt when u ~' 4’ then the argument above still holds and we have a proper 4- colormg
of G’ in which u ~' v implies S(u) # S(v) for all © and v.

Now consider the bad hexagons. Construct a multigraph H with loops as follows. The vertlces of
H will be obtained from (U, V' (h))UU by identifying pairs of opposite vertices in the bad hexagons.

The edges of H will be the edges vfu? originally colored 4 in (& which meet the bad hexagons.

The graph H may contain loops and mu1t1ple edges. The vertices u € U will be of degree 1 in H
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and the pairs of opposite vertices of the bad hexagons will be of degree 2. Also the vertices of ¥
are adjacent only to vertices of the bad hexagons. Hence H decomposes as a vertex disjoint union
of paths, cycles, double edges and single vertex loops. All the paths are of length at least two and
have endpoints in U. Proper color the edges of H with {1,2,3,4} as follows. Starting at some
u = U color the first edge in the path starting at u with 4, then color subsequent edges so as to
mzke the coloring proper. When we get to the other endvertex u’ of this path, make sure the last
edge is colored either 4 or k,s. Repeat with each path in turn, starting with «” where v ~' v/
if possible. Eventually all the paths will be colored in such a way that if v, € U and v ~' o/
then at least one of S(u) or S(v/) will be {4}. Now give every cycle and double edge an arbitrary
proper coloring. The loops will remain uncolored for now.
Putting the colorings of G' and H together, we get a coloring on all the edges of G except the
edges of the bad hexagons and any diagonal edges of these hexagons (the loops in H). We can
match up the colorings on the edges e, since it is colored either 4 or k, in H and either color is
aczeptable in G'. If e,y is another such edge and u ~ v’ then v ~' u' and so at least one of these
edges i3 colored 4 in H. We therefore have a partial coloring of G with S(u) # S(v) whenever
% -~ v and v and v are not in bad hexagons.
It cemains to color the bad hexagons themselves. If h is a bad hexagon then A corresponds to
three vertices of H. If i has r diagonal edges in @, 0 < r < 3, then r of the vertices in A are
isclated loops and the remaining 3 — r have two edges colored with distinct colors incident with
them. In terms of G, this means that the pairs of opposite vertices in the bad hexagon that are
nci joined by a single edge have one edge incident with each vertex of the pair which is already
coiored, and these colors are distinct. By Lemma 5 we can complete the coloring of 4 and any
diagonal edges so that opposite vertices see distinct color sets. We have now colored the whole of
& as required. O

4 Vertex-distinguishing Colorings

Assume k > x'(G) and ng < (8) + 1 for all d. We can apply Theorem 1 to get a coloring in which
each color set is used at most twice (ng < 2 for all S C {1,...,k}). Such a coloring will be called
semi-vertez-distinguishing. We alm to use each color set at most once. We say a vertex v of G
is bad if ng) = 2. An optimal k-coloring is now just a semi-vertex-distinguishing colormg of G
with %k colors and minimal number of bad vertices.

Censidering Gy, as a board and the vertices v € V() as pieces, the bad vertices are just the pieces
that occur in piles of height two on some square (2-piles). The good vertices are those pieces that
occur in l-piles.

Our strategy is to move the 2-piles around so that they all end up on squares S that contain some
specified colors. Write [a, —] = [{a},{1,...,k}] and [—,a] = [0, {1,...,k} \ {a}] for the sets that
coutain a and don’t contain a respectively. By Lemma 2 we can swap any pair of neighboring piles.
If we push a 2-pile onto an empty square (0-pile), no other piles will move. However, if we swap
a 2-pile with a 1-pile or move a 1-pile onto an empty square, then our opponent will swap some
other piles as well. It it therefore important that when we move a 2-pile from [—, &) to S € [a, —]
that this square .S was previously empty, otherwise some other 2-pile may move from [a, —] back



to [—,a]. The following lemma shows that if we have enough 0-piles in [a, —] then we can move
0-piles in [a,—] 50 that some are adjacent to any given 2-pile in [—,a]. We can then move this
2-pile into [a, —]. Repeating this process for each 2-pile in turn allows us to move all the 2-piles
into [a, —]. We actually prove a “relative” version that works in [S_, 5] rather than just G since
we shall need this to move the 2-piles onto squares that contain several specified colors.

Let o7, gr and by be the number of sets § € T with ng = 0, ng = 1 and ng = 2 respectively.
Note that |T| = or + g7 + by and ny = g7 -+ 2by. Defire an S-recoloring of an optimal coloring
of G to bz any optimal coloring of G obtained by a sequence of applications of Lemma 2 with
a,b € 5. M T is igp-invariant for all a,b € S (for example if T = [S.,54]y with § € 5.\ S_) then
the quantities o7, g7 and by are the same in any S-recoloring. '

Lemma 7 Assume 5_ C 8., a € S\ S_ and S € [S_,S+\{a} Given an optimal k-
coloring of G such that ng, = 2 and og_ UlahSely = d_l__E__l(ISJI!gSI 11) — 1 then we can find
an (S4 \ (5= U {a}))-recoloring such that ng, = 2 and ng = 0 for some S € [S.. U{a}, ;] with

d(S, 8o) = 1.

Proof.  ¥or i >0let T; = {§ € [S_ U {a},S4], : d(5,50) =i} be the number of sets containing
the color a at dlstance i from So in [S_,84]. Write O; = {S € T; : ng == 0} for the set of O-piles
n 7; and o; = oy; = |0y for the number of such O-piles. As a special case write Og = Ty = {Sp}-
Write r = |54 | - [S_| and s =d — |S_.[. Then by assumption

Zoq"”s—l(::i)_l' (1)

Among alF (4 \ S. \ {a})-recolorings with ng, = 2, choose those with maximal o1; and among
these, chcose the ones with maximal oz, and 80 on. If 6, > 0 then we are done, so assume o; == 0.

If §7 = ip.S for some b,c € S\ S_\ {a}, call §' an improvement of § if d(S’, Sp) < d(S, Sp) and
call §’ a worsening of S if d($', S} > d(S, Sp). .

Now assuxae § € 0y, j > 2 and §' = 4.5 is an improvement of S. If ng = 2 we could move the
2-pile on %" to S by Lemma 2 and get a bettéer coloring, hence ng < 2. If ngr = 1 we can move
the I-pile un 8’ to § by Lemma 2. By the choice of our coloring, we must get a coloring not better
than the vriginal one. Hence there exists an ¢ < j and some S” € O; such that the recoloring
moves a G- pile (2-pile if § = 0) from S” to i4,5”, which is a worsening of 5”. In this case we say
that the improvement S' = i,,S of § maiches the worsening i, 8" of §”. Now assume ng = 0.
We say the improvement S’ of S matches the worsening S of §'. Hence every 1mpr0vement of §
is matched with some worsening of some S” € O; with 0 <14 < j. :

For every & <4 < 7 < d, let x;; denote the number of worsenings in O; matched with improvements
in O;. For i > 0, every S € O; has (1—1)¢ improvements and (s—4)(r —s—i) worsenings. Moreover,
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Sp has s(r — s — 1) worsenings. Hence we have:

Dy = 0i(i~1),  j=2,..,8 (2
Yomy < ofs—i)r—s—i), i=2..,8-1; (3)
=il .
Zmﬁj § 3(?" - &5 1), and =T = 0. (4)
=2

“Ne shall now find the maximum of 3”7 ; 0; under the linear restrictions (2)—(4) assuming only

that o; and z;; are non-negative real numbers. Assume we have a solution of (2)-(4) with Y o;

“naximal and assume that z; ;1 > 0 for some ¢, § with 7 > i (or j > 1 if § = 0).

case 1. Forallh > j +1, ;415 = 0.

ifor some ¢ > 0 we can increase z;; by €j(j — 1) and reduce z;;4: by €j(j — 1) keeping z; j+1
non-negative.

Jase 2. There exists A > j + 1 with o495 > 0.

Yor some € > 0 we can increase x;; by €j(j ~ 1), increase z;p, by e(s — j)(r — 5 — 7), reduce z; ;41
by €j(§ — 1) and reduce Tj41,h by e(s — 7)(r — s — §) keeping all of these non-negative.

"To malke (2) hold, o; must increase by € and 04, must reduce by Jﬁe Equatlo_n (4) is unaffected,

#0 it remains to check (3). These are unaltered except when i is replaced by j and j + 1. For j

»oth sides are increased by e{s — j)(r — s — 7) in case 2 and the right hand side only is increased

-acase L. For j-+1in case 2 the left hand side is reduced by (s — 7)(r — s — j) and the right

nand side reduces by e’ I=t(s — j —1)(r — s — j — 1) which is less. Tn case 1, the original inequality
15 strict since the left side is zero and 0j4.1 > %5 54+1/7(7 + 1) > 0. Hence for sufficiently small ¢ it
2maing true. Now (2)-(4) all hold with 3" o; increased by -2 77 contradicting the maximality of
2295

The only non-zero z;; are therefore zop and z;;41 for ¢ > 2. This implies that the maximum Z 0y
18 atbained for

s{fr—s—1
02=‘(—2—) and o0;41 =0;

(s —&)(r — 5 ~1)
i+ 1)

for i=2,...,s—1.

3y induction we conclude that in this case,

1 E r—s—1
- i =2,...,8— 1.
% 3-1(s—z’)( i—1 )fo” s

it follows that in any case,

Sos i (L)) = { (0 - <1 (D) -

3 contradiction to (1).
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Lemma 8 Given an optimal k-coloring of G, sets S_ C S, and ¢ € S.|. \ S_, we can find an
{(S+\S-)- recolormg such that for all d,

d—15_|
gS_u{eh84], S mg[s_,&,]d .

Also, for any single value dy we can also ensure that

do — |S5_|
g15-_ude}, s+]d0 WQES-,S+

Proof.  Tc simplify the notation, write g, 4 for 9[s_U{a},541, Consider the set of recolorings for
which the double sum 37,3 g \s 92 ; is minimal. Among these cousider those with 33; gea
minimal and among these pick one with Je,do minimal. We shall show fthat this colormg satisfies
the conditions of the lemma.

We follow the proof of Lemma 2. Pick a,b € S\ S_ and let K be the matching on Viaoby which
matches the endvertices of (a,b)-Kempe paths. Let J be a union of maximal partial matchings
between Vg and V; ¢ for § € [aQb]. If § € [adb] and |ng — n;,, 5| = 1 then precisely one of ns
OT 7,5 is equal to 1. Assume ng = 1. There is also precisely one vertex in V(5,i,55) Which is
unmatched by J. We shall call this vertex vg. Note that if n;, 5 = 0 then S(vg) = S, however
if ny,,6 = 2 then S(vg) = igS. For each d, construct maximal partial matchings Jj between
{vs: 8 € [G-U{a}, S+ \ {b}],} and {vs : § € [S_ U {b}, 54+ \ {a}],}. Let J' be the union of all
these Jj. Note that if g, 4 > Gb,d then there are more vg in the first set, so there exist some vg
unmatched by J' with S € [S_ U {a}, 54 \ {6}], The partial matchings J and J' are disjoint by
construction.

Now follow the proof of Lemma 2 with JUJ’ in place of J. If g, 4 > g4 we can pick some vy = vg
which is unreatched by J U J' and change colors as in Lemma 2. The result of the color changes
is to swap pairs ng and n;,s whenever S = S(v;) and v; is not in the partial matching J.
However, the effect of such swaps on g, o and gy ¢ are reversed on the next step every time we
use the mat-hing J' to obtain the next vertex. Hence only the values of Go,ds Gb,ds Ga,¢ and
gb,# can change where d' is the degree of the final vertex v,. As in Lemma 2, the minimality of
> d 2 acs v gi 4 implies that |ga d—gbal <2 and if it equals two then the values of g,,0 and gy4
can bhe swapped with no other go' & changed.

Applying tkis to g, 4 and using the fact that 3_, g, 4 is minimal we deduce that for a.lI g and d,
Jed < Gaa+ 1. Since 35 c0 g gag = (@ —[S-|)gs_ s, the first part of the lemma follows.

For the second part, if geq4, > W%HQ[SH R then there exists some b with g. 4, = gp.4, + 1
- We can thex: swap the values of g, 4, and g 4; as above Some other pair g, ¢ and gb 2 differing by
one will also swap, however this does not increase either ), g. 4 or Ed a€S\S_ ga’d and gives a
lower value of g 4, contradicting the choice of coloring. ; O

Lemma 9 Assume k > x'(G) and a,b,c-€ {1,...,k},
1. Ifng, o1 <Lngng,ng <2, ng1<k+1land ford<d<k-2
d—3 k-2 k
< = mi .
o< gmpmn{a(30) ()} 9
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Then we can find an optimal k-coloring with a,b € S(v) for every bad vertez v.

2. Ifno,na,me <1, ngyna,ng <2, ngoy <k+1and for 5<d<k—2

e < Stmafo(577), () 2 e

Then we can find an optimal k-coloring with a,b,c € S(v) for every bad vertex v.

Proof.  Let Uy = [0,{1,...,%k}], U1 = [{a},{1,.. l, U = [{a,b},{L,...,k}] and U3 =
{a,b,c},{1,...,k}] be the collectmn of all subsets contammg 0, {a}, {a,b} and {a, b, c} respec-
tively. Since ng < ( d) + 1 in both parts 1 and 2, a semi-vertex-distinguishing k-coloring exists.
Use Lemma 8 with §_ = @, §. = {1,...,k} to obtain some optimal k-coloring with few 1-piles
in Uy. We now move all the 2-piles 1nto U;. We can do this safely only when we move the pile
onto an empty square, otherwise some other 2-pile may move. We therefore need our 2-piles to
be adjacent to empty squares in U;. Use Lemma 7 with S_ =0, S = {1,...,k} to movea O-pile
next a 2-pile outside U;. Now move this 2-pile inside I/} using Lemma 2. Repeat with each 2-pile
outside U} in turn until they all lie in U;. We shall be able to move them all inside Uy provided
for all d,

1 EF-1
KMM%%W%M—U“ﬂ%th—lg—l)—l &

The left hand side is the number of empty squares in ({J1)4 just before we move the ﬁnajl 2-pile
into (U1)q. We now repeat the process, moving the 2-piles into Us. Using Lemmas 7 and 8 with
S_ = {a} and 5, = {1,...,k} ensures that no piles move in or out of U; when we move the 2-piles
into Us. Hence the value of 9(uy)y and by, are unaffected by these recolorings. Using Lemma 7
with color b allows us to move all the 2-piles into Uy provided that for all d,

' 1 (k=2
I(UZ)dl - (b(Ue)d e 1) — G(Ua)yg = m (d _ 2) — 1. (8)
Sirmilarly, we shall be able to move all the 2-piles into Uz provided
1 (k-3
[(Us)al = (b(UD)d 1) = 9wy, 2 -3 (d 3) 1. 9
Using Lemma 8 and the fact that d < k gives

zd wd(d -1) zd(d —1)(d — 2)
I(tn)g = % +1 I(V)a = k(k — 1) +2 and gy, < k(k - D)(k—2)

+3,  (10)

where T = gy, Since |(Ui)af = (57%), we now get the following sufficient conditions.

y+%d_s %(2:1)4-1, | oAy
zdld—1) _ d—3 (k-2
VY k-1 S a"“"z"(d z) (12)
sd(d—1)(d—2) _ d—4(k-3
YT RkE—Dk—2) = ETECLQ)_L (13)
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where y = b(UO) .+ By mutiplying the first by %’_‘—i < 1, it can be shown that the first inequality
always follows from the second. Similarly the second follows from the third. The second and third
in turn follow from the conditions in parts 1 and 2 respectively of the lemma when 4 < d < k—2
or 3 < d < k — 2 using the fact that 2y + z = ny. For small d, ng < 1 ensures that there are no
bad vertices of degree d and ny < 2 ensures that if a bad vertex of degree d exists, then there is
precisely one 2-pile and no 1-pile in Gy 4. Hence it can easily be moved in so that {a, b} € S(v) or
{a,b,c} € 5(v) without affecting any of the other piles. This leaves only the case when d = k — 1.
Choose the dy of Lemma 8 to be d = k£ — 1. The graph Gk k-1 is isomorphic to K and there
is only one vertex in each of (Uz \ Uz)g, (U2 \ U1)q and (U1 \ Up)g. Lemma 8 then implies that
if any 1-piles are in (U;)4 then every set in (U; \ Up)q has a 1-pile. Since every set in Gy -1 is
adjacent to every other, we can move all the 2-piles into (U3)4 or (IU3)g by swapping them with
empty squares. This will work provided y + max(z — 2,0) < k¥ - 2 or y -+ max(z — 3,0) < k - 3.
Since 2y +z = ng_q and we can assume y > 1 this will hold if ng_y < min(k+ 1,2k — 3) or
min(k + 1,2k — 5) respectively. These follow from ny_.; < k+1 when k& > 4 or k > 6 respectively.
For smaller & we have already assumed ng_; < 2 and used a different argument. O

Theorem 10 Assume k > ¥'(G).

1. IFng,n €1, ng,ns,mp <2, ng_1 < k-+1 and for 4 <d < k —2

ng < j:gmin{Q(z:g),(ij)}. (14)

Then we can find a strong coloring of G with at most k + 2 colors.

2. Ifng,my,ma <1, ng,na,mp <2, ng_1 <k+landfor5<d<k—2

ng < j:;min.'{2(z:§),(§)}—2. (15)

Then we can find a strong coloring of G wzth at most k + 1 colors.

Proof.  Find an optimal k-colorings as in Lemma 9. Each bad vertex is incident with edges of
both colorz in Sy = {a,b} (or all three colors in Sy = {a,b,¢}). Let G' be the subgraph of G
containing all edges colored with colors in Sp. Let ~ be the partial matching defined by u ~ v
if §(u) \ 8y = S() \ Sy and |S(u)| = |S(v)|. Recolor G' with four colors as in Corollary 4 or
Theorem 6. This uses a total of 6 — 2+ 4 = k+ 2 (or k—3+4==%k+ 1) colors and gives a strong
coloring of . It is strong since if S(u) = S(v) in the new coloring then u ~ v and Sgr(u) = Sqr(v)
S0 % = . |

Corollary 11 If for all d, ng < (2”“:3) and if k is the smallest integer such that for all d, ng < (2)
then k < x.(G) < k+3. . :
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Proof.  Apply part 1 of Theorem 10 with k replaced by & + 1. The condition k -+ 1 > x/(G)
follows from Vizing’s Theorem since & > A(G). We need to show that

(Z) < j—:g min {2(’; :;)’ (k: :1) } | %)

(d—2)k(k—d+1) <2(d—3)d(d—1) and (d—2)(k—d+1)<(d-3){k+1). (17

Whi_ch reduces to

These both hold when & < 2d — 3 and d > 4. For d < 4 the.conditions imply ng < 1. For
=k+1)-1,ng<t<k+2 Finally ford=(k + 1), ng =0 < 2. O

Note that this implies a slightly weaker version of Conjecture 2 when (G} = O(log {V(G)|) since
then (2d 3) will be greater than [V(G)| for all d > §(G).

Corollary 12 If G is a graph with n vertices, A(G) > V2n +4, 6(G) > 5 and k is the smallest
integer such that ng < ( ) foralld. Then k < x\(G) <k+1. :

Proof.  The conditions of part 2 of Theorem 10 follow (after some calculation) when 5 < d < k-2
since ng < n. (The worst case is when d = 5 which gives the condition (k — 3){k —4) > 2(n +2).)

Ifd = k — 1 then ny < (,c 1; <k+1. Ifk=d=A(G) then ng = 1 and we use a slightly stronger
version of Vizing’s theorem to get a proper coloring w1th A(G) colors. Otherwise m; = 0 and
k> A(G)+ 1. O

5 Conclusion

Theorem 1 is likely to hold as well when the given color set S is replaced by a collection 7 of
sets, Le., [ny — ny| < 2 at least when 7 and 77 are sets of the form [S_, Sy}, of the same
cardinality and same degree d. Hopefully the balanced coloring described in Theorem 1 will have
other applications.

It is worth noting that in Theorem 10, the bound on ng is close to the best possible obtainable with
our method. Indeed, we require ng < ( ) to have any chance of getting a strong coloring and we
reguire ng < 2( ) +lorng < 2( ) +1to move all the 2-piles so that they contain the specified
colors {a,b} or {a,b,c}. The extra factors &3 and &3 3 can be improved by a stronger version of

Lemma 7. The best result that we have achieved so far gives factors of the form 1-— O(Tm)'
However, these improvements are quite complicated, so we did not include them here.

It has also been noted by Bruce Reed that one can use the Lovasz Local Lemma to improve the
bounds on ng for small d. Using this, one can remove the restriction §(G) > 5 in Corollary 12
although the bound on A((F) becomes A(G) > C+/n for some larger constant C. It remains to
be seen if Conjecture 2 in [6] holds for A(G) < +/2[V(G)| + 4. In particular, it would be most
interesting to know if Conjecture 2 holds for regular graphs of low degree.
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