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Summary

Modern scientists tend to be overloaded with new data and new information. Many research
fields work on solutions to this dilemma, such as Statistics (for data), and Natural Language
Processing (for information written as texts). Two new research fields are even born since some
10 years, namely Data Mining and Text Mining that attempt to regroup and cross-fertilise all
methods dealing with this overload. This paper presents how our success in one unavoidable step
of Text Mining, namely the detection of the terms terminology, can be applied to texts relative to
the eukaryotic DNA-binding proteins.

Introduction

Genomics developed powerful and large scale methods generating heaps of data, leading to a
well-known information overload (see, for instance, Andrade and Valencia, 1998; Palakal et al.,
2002). The scientific community acknowledges widely that the process of knowledge extraction
from texts is greatly improved when an “ontology” of the domain is available, be it in Genomics
or in any other domain dealing with large quantities of texts such as many industrial processes.
Our results improve one specific and unavoidable step in this process, viz. the gathering of
significant terms ("terminology') that will constitute the nodes of the ontology. Our research
topic is the eukaryotic DNA-binding proteins because of the importance of these proteins on
spatial and dynamical genome organisation (Gilbert et al.,, 2000). We are thus applying
knowledge extraction from biological texts, specialising into the yeast Saccharomyces cerevisiae
as being the most suitable eukaryotic organism since so much information relative to it has been
already gathered (Guelzim et al., 2002).

To achieve this goal, we are developing an original chain of automatic tools starting with the
texts, putting them in a more standardised form (“cleaning”), tagging the words, spotting
significant sequences of words (“terminology”), and finally structuring the terms in an ontology.
This paper reports on interesting results obtained at the stage of terminology. Note that contrary
to other authors such as (Andrade and Valencia, 1998; Collier et al., 2001; Ohta et al., 2002;), we
start with the untagged texts themselves, not with a set of examples of what a good term might
be. Our approach thus belongs to the so-called "unsupervised learning" approach which can be
judged by an expert after the learning has taken place, unlike the "supervised learning" approach,
such as used by (Collier et al., 2001), where expert knowledge is provided to the learning system
before the automatic learning takes place. A recent example of such an unsupervised approach in
the parent field of biomedical methodology is given by (Bodenreider, Rindflesch, and Burgun,
2002).



Our goal is the building of an ontology relative to eukaryotic DNA-binding proteins. In order to
simplify the automation of the whole process, we try to obtain an ontology which is as much as
possible a taxonomy, where a term belongs to one concept only, whenever this is possible. This
probiem is known for being very difficult since it implies dealing with polysemy, i.e., words can
show many different meanings depending on their context. There is no known way to solve this
problem completely, even in a language of speciality since polysemy is such an essential
component of natural language, as shown to us by our experience with other fields, such as texts
in human resources, and scientific publications (Kodratoff, 2001a; 2001b). One of the possible
ways of dealing with polysemy supposes being able to extract terms that are long enough (i.e.,
they are a composition of several words) to have a unique meaning, and this paper describes a
powerful method for generating particular, quite long terms, as strongly suggested by the results
of (Bodenreider, Burgun, and Rindflesch, 2002) relative to biomedical terminology, on the
problem of the particularisation of nouns by adjectives.

The methodology
1 - Gathering the corpus

We queried the National Library of Medicine (NLM)’s Medline (PubMed) database with the
keywords DNA-binding, proteins, yeast thus obtaining a corpus of 6119 abstracts. The request
was done in Jan. 2002 and we obtained so many interesting terms with this corpus that we
concentrated on the improvement of our methods rather than on dealing with corpus
maintenance. In the conclusion, we shall see how the method we developed will be useful for
corpus maintenance also.

1- Cleaning the corpus

At this step, we perform an homogenisation of these textual data in order to obtain the cleaned
corpus. This step is very important since it governs the good behaviour of all further linguistic
treatments but it is made of a very large number of rules. Besides some seemingly trivial
transforms such as suppressing the authors names, data base formatting, etc. we essentially
performed two types of cleaning. The vocabulary is not fixed and, for instance, we replaced by
"C-term" all occurrences of ''carboxy-terminal”, 'carboxy termini", "carboxyl terminal",
"carboxyl termini", "COOH-terminal", "COOH-termini", "C02H-terminal", and "CO2H termini."
This operation is performed by some 100 groups of rules. We also replaced the gene aliases by
their generic name, as given in ftp://genome-ftp.stanford.edu/yeast/.. /registry.genenames.txt ,
thus generating 1932 groups of rules.

2-Tagging the corpus

Brill’s tagger (Brill, 1994) tags automatically words in context. Tagging associates a grammatical
label to the words of the corpus. This is far from being a trivial task because Brill’s tagger has
been trained on a general corpus, not on the topic of biology. It is thus unable to tag properly
English of speciality, for instance 70% of the words of our corpus are unknown to the standard
version of Brill's tagger. We had to modify its original rules and we developed what we call
“GenoBrill,” a version of Brill’s adapted to molecular biology and Genomics. To that effect we
introduced new rules in GenoBrill. As an example of such a rule: if a word ends by “ine,” then
attribute to it the label noun, which writes as the following rule :



if ($word =~ /ine$/) push @tags, NN,
Even though quite simple, it was also very important to recognise formula within texts, and we
introduced a new tag, "formula," besides the classical ones such as "noun", "adjective," etc.

A total of 30 lexical rules and 4 contextual rules were added by which we improved from a
recognition rate of 30% to a rate of 85%.

3-Extracting the relevant terms

From this tagged corpus, we extracted the most relevant terms for the field. The importance of
the tagging comes from the fact that many words can have different syntactic roles (such as the
same word being adjective or noun), and their behaviour in forming terms depends of these roles.
This is why we added to Brill a new syntactic form "formula-noun" describing the cases where a
formula is followed by a noun.

The relevance measure relies on a measure of association favouring the association of words that
are as seldom as possible associated to any other words. For instance, when considering the term
"double-stranded-DNA," DNA appears linked to many other words, and this decreases the
relevance of the term, while double-stranded appears practically only when followed by DNA,
and this increases the relevance of the term. There exist many such measures and we tested the
versions of (Church and Hanks, 1990), (Dunning, 1993), (Jacquemin, 1997) and (Daille, 1998).
Our main observation is that the precision of the result, as defined immediately below, does not
substantially depend on this choice. For theoretical reasons, we finally decided to chose
Jacquemin’s that combines pure relevance and the number of instances of the terms in the texts,
and is defined as follows. Let x and y be two adjacent words appearing as "x y", n(x) and n(y)
their total number of occurrences in the texts, and n(x, y) the number of their common
occurrences as the sequence "x y". Their mutunal information is given by I(x, y) = - logy (n(x, y) /

(n(x)*n(y))). Let nmax be the maximum number of common occurrences for any couple of
words, and Imax the maximum mutual information, then the relevance of the term x-y two words
x and y, A(X, y), is defined by A(x, y) = 1/2 ((I(x, y) / Imax) + (n(x, vy} / nmax)). This definition is
trivially extended to existing terms in order to form terms of length larger than 2.

The precision measure is performed as follows. Generate terms with a relevance measure
RelMeasl. This generates several thousands of terms, of which the first 2000 most relevant are
chosen. The biologist studies these 2000 terms and classes them in 4 possible categories: term
non relevant to biology, general term relevant to general biology, term relevant to Genomics,
specific term relevant to a subfield of biology, different from Genomics. The computed global
precision is the ratio of the sum of relevant terms (of the three kinds) to the total number of
generated terms.

To compare with RelMeas2, generate the terms following another relevance measure, and the
expert classes again the best 2000 terms relative to RelMeas2. The best relevance measure is the
one showing the highest precision.

Even though the load on the expert is very large, this work was possible because the results of the
measures do not differ too much, and the expert had to class only a few new terms she did not
class at the preceding try.



All relevance measures yielded a precision ranging around 82%. This rate is slightly higher than
the 79% published on a similar task (Rindflesch et al., 1999) which can be explained by our
careful cleaning and, over all, the good performance of our GenoBrill.

In order to significantly increase the precision, we added several heuristics to the relevance
measure. The simplest one is that the terms already used by the authors are favoured. For
instance, if some authors write "double strand" and others "double-strand" then the formation of
the term "double-strand" is favoured. Let us call A the relevance measure of a given term, and let
n(x, y) be the number of times it appears as a term in the texts, then we compute an actual
relevance R(x, y) = A(X, y) * exp(n(x, y)).

Another simple heuristics takes into account the number of different texts where a term appears.
When a term appears in very few different texts, then the effective number of occurrences of this
term is decreased. Let N be total number of texts, nj be the number of occurrences of the term in

the i-th text, then we compute an effective number of occurrences, n-effect, by:

n - effect = EN‘, [n, - "ili%]

i=1 Jj=0

Finally, our main heuristics is to obtain the terminology in several iterative steps, while the terms
(or words of the first iteration) of the (i-1)-th iteration are favoured at the i-th iteration. The value
of the relevance is multiplied by a coefficient computed from the iteration (i-1) by:

Z—+ F@G-1)*k

where IF(i-1) is the frequency with which the word is included in a term at iteration (i-1), and
where k is a parameter bounding the value of the coefficient.

We also set a lower limit on the number of occurrences necessary for a term to be accepted in our
list. This number increases in a simple way with the decrease of the relevance rank of the term,
and the increasing number of iterations.

The above formulas were built and their coefficients found by a trial-and-error method where
improving the precision defined success. After all these trials, the list of terms actually checked
by the expert in the final run numbers exactly 1860 terms. The percent of terms acknowledged as
significant by the expert is 88.4%.

Since the list of the all the terms we obtained counts to 9014, among which 2054 coming directly
from the authors (thus supposed to be significant), this means that our methodology generated
6960 terms, and that we were able to generate approximately 6152 significant terms. The total of
significant terms we are working with is thus 6152 + 2054 = 8206.

Some claim (Tsujii, 2001) that around 106 terms are necessary to properly map Cell-Signal
Pathway. The relatively "small" number of terms we discovered is nearer to the one found in
Gene Ontology. This can be explained by the fact that we deal with abstracts only, or alternately,

that such claims are exaggerated. At any rate, be it 100 or 104, automation will be necessary to
generate sets of term properly reflecting the literature.

Validation relative to Gene Ontology



Gene Ontology (GO, http:\www.genontology.org) is one of the most significant terminology base
in Genomics. This base offered an assistance for genome annotation (ref), and is already
established in a number of biological bases. GO displays some 13000 controlled terms (October
2002), that are nodes of the ontology, with a monthly update. GO is a very reliable system
because the relevance of the terms is regularly checked, and the terminology is adapted according
to evolution in genomic area, thus terminology and ontology are meticulously controlled by
experts. In order to validate the sets of terms we generated, we compared our results to the terms
included in this widely used existing ontology. The large differences we then observed lead us to
spend a significant amount of effort in understanding these differences. GO is visibly built by
experts and for experts, not for an automatic building and exploitation, which is our approach.
Being built by experts, it lacks the completeness that can be brought by an automatic approach —
and we shall see that we are already able to propose more than 5000 new terms to include to their
approximately 13 000. This paper will present a small extract of such terms. Being built for
experts, its use for automatic knowledge extraction would be very uneasy, but it is already so
well-built that it could be used a starting point for such a use. On the other hand, we shall see that
an automatic search of all the relevant biological terms useful in genomic sequence annotation
would be an interesting improvement.

In order to perform a large scale comparison between our terminology and GO's, we had to
transform all its nodes into terms, according to a standardised syntax. Since they contain various
signs such as “(”, “<”, “\” and English words such as "and", "associated to" etc. it is very uncasy
to eliminate them systematically (and correctly!) from a list of terms (Colliers et al., 2001). In
such a way, we form thus a list of terms we-shall call “GO-ourterms.” GO-ourterms does not
contain some terms that indeed exist in GO, but that are hardly understandable to a non expert as
they are presented. For instance, GO: 0007001 labels “chromosome organization and biogenesis
(sensu Eukaria)” which point at two terms, at least for a human specialist, “chromosome-
organization-sensu-Eukaria” and “biogenesis-sensu-Eukaria”. Note that knowledge of the field is
necessary to balance in such a way the words around the "and".

As another example, consider GO:0006139 : nucleobase, nucleoside, nucleotide and nucleic acid
metabolism. In this case, the "," is not equivalent to a "-" since "nucleobase" and "nucleoside" are
terms by themselves and " nucleobase-nucleoside" is not a valid term (at least, it is obviously not
intended to be so in GO),

Another problem comes from synonyms of interest for biological texts, or simple syntactic
variants, such as our term “initiation-of-transcription” trivially corresponding to G0:0006352
“transcription-initiation.” Note however that, since we did not find significant occurrences of the
term “transcription-initiation” in the texts, this means that the authors express themselves as our

term shows.

In this way, we generated a GO-ourterms containing 13641 terms. It is nevertheless obvious that
we introduce here some error since some terms an expert would recognise in GO were not
generated by our automatic method. In comparing our results to GO's terminology, we have thus
to compute a total rate of error. In order to achieve this goal, we selected among the 1860 terms
validated by the expert the 1428 ones that are not in GO-ourterms, and we sampled 100 of them
among these 1428. The expert checked then how many of this 100 were erroneously believed not
to belong to GO. It happens that this error rate is very low, around 4%. In other words, we can



say that combining the two different sources of error we introduce (one is by generating non
significant terms from the texts, the other one by generating non significant terms from GO) is of
the order of 15%. Since the total number of terms we generate and that are not in GO-ourterms is
8553, this means that 1283 of them might be errors, that is we generate at least 7270 valid terms
that are not in GO. This shows also that GO’ way of presenting the terms is quite systematically
done: the exceptions we signalled above are indeed exceptional.

Among the 1428 validated terms not in GO-ourterms, we chose a small set of terms illustrating
how these terms could fit into GO. This list of concepts (and their relations) are shown in table 1.
Our corpus and the results of the various treatments on this corpus are at
http://www.lri.fr/ia/genomics/ .

The terms in table 1 illustrate various relationships between our terms and the ones of GO.

Some of these could be easily incorporated in GO. For example “Hsp90-chaperone” is an obvious
instance of GO-existing “chaperone” GO:0003754.

Some others are conceptually vey far from any GO concepts, and it would be interesting to create
links relating these terms. For instance, “basic-helix-loop-helix-leucine-zipper-motif” is a child of
DNA-binding-protein-motif, itself a child of DNA-binding-protein-domain, itself a child of GO
existing DNA-binding GO:0003677. Table 1 shows that our terms contain the necessary
intermediates.

Some of our terms could be inserted between two GO concepts. For instance, our term meiotic-
prophase can be placed between meiosis (GO:0007126) and meiotic-prophase-I (GO:0007128).

Finally, some GO terms, such as DNA-double-strand-break-processing (G0:0000729) could
~receive a number of obvious parents, such as our terms double-strand-break and DNA-damage.

cellular-response cellular-differentiation psendohyphal-differentiation
chaperone (GO:0003754) Hsp90-chaperone
chromatin-remodeling chromatin-remodeling-complex (GO:0016585)
chromosome (GO:0005694) chromosome-structure arm-of-chromosome
CRE-binding-proteins cAMP-response-element-binding-protein-binding (GO:0008140)
DNA-binding (GO:0003677) DNA-binding-domain
DNA-binding (GO:0003677) DNA-binding-protein activation-domain  glutamine-rich-activation-domain
DNA-binding (GO:0003677) DN A-binding-protein
DNA-binding (GO:0003677) DNA-binding-protein-family TATA-box-binding-protein
DNA-binding (GO:0003677) DNA-binding-site Gal4-binding-sites
DNA-binding-protein-domain basic-zipper
DNA-binding-protein-domain DNA-binding-protein-motif basic-helix-loop-helix-leucine-zipper-motif
DNA-binding-protein-domain zinc-finger-domain
DNA-damage DNA-damaging-agent
DNA-damage double-strand-break DNA-double-strand-break-processing (GO:0000729)
DNA-double-strand-breaks illegitimate-recombination
DNA-recombination (GO;0006310) Hhk holliday-junction
DNA-recombination (GO:0006310) illegitimate-recombination
DNA-recombination (GO:0006310) intrachromosomal-recombination
DNA-replication-initiation (GO:0006270)  initiation-of-chromosomal-DNA-
replication
DNA-replication-licensing (G0:0030174) minichromosome-maintenance
DNA-sequence promoter-sequence cis-acling-element
DNMNA-sequence DNA-element cis-acting-element



DNA-element

repeat-sequence

DNA-sequence
DNA-sequence

DNA-sequence repeat-sequence

MADS-box
inverted-repeat

telomeric-repeat

DNA-transposition (GO:0006313)
double-strand-break-repair {(GO:0006302)

transposable-element
DSB-induced-gene-conversion

double-strand-break-repair (GO:0006302) Rad5!-family

extragenic-suppressor

histone-acetyltransferase (GO:0004402) ik histone-acetyltransferase-1

mating (GO:0007618) silent-mating-type

meiosis (GO:0007126) carly-meiotic-gene

meiosis (GO:0007126) meiotic-prophase nteiotic-prophase-1 (GO:0007128)
meiosis (GO:0007126) meiotic-prophase meiotic-prophase-IT (GO:0007136)

response-to-osmotic-stress
(GO:0006970)
response-to-oxidative-stress (GO:0006979)

Hsp%0-chapercne

osmotic-stress

oxidative-stress
protein-folding
response-to-heat (GO:0009408)
response-to-nitogen-starvation

heat-shock-factor
pseudchyphal-differentiation

(G0:0006995)
RNA-modification (GO:0009451) posttranscriptional-modification
RNA-polymerase DNA-directed-RNA-polymerase (G0:0003899)

RNA-directed-RNA-polymerase
(GO:0003968)

RNA-polymerase

RNA-splicing (GO:0008380) *Ek alternative-splicing
single-strand-DNA-binding (GO:0003697)
spindle (G0:0005819)

spindie (GO:0005819)

spindle (GO:0005819)

telomere (GO:0005696)
transcriptional-activator (GO:0016563)
transcriptional-activator (GQ:0016563)
transcription-factor (G0:0003700)
transeription-factor (GO:0003700)
transeription-factor-binding-sites
transcription-initiation (G0:0006352)
transcription-initiation (GO:0006352)
transcription-regulator (GQ:0030528)
transport-protein

singlé-strandcd—DNA—binding-protei.u

mitotic-spindle-assembly (GO:0007052)
mitotic-spindle-elongation (GQ:0000022)
mitotic-spindle-positionning (G0:0018986)

mitotic-spindle
mitotic-spindle
mitotic-spindle

Hokk telomeric-repeat
Gal4-DNA-binding-domain
PACE-binding-protein
GATA-family
heat-shock-factor
E-box-binding-protein
promoter-sequence TATA-box
start-site-of-transcription
repressor-activator
ATP-binding-cassette-transporters
LIM-homeodomain

zine-finger-protein zinc-finger-domain

zinc-finger-motif C2H2-zinc-finger-
motif
zinc-finger-motif C4-zinc-finger-motif

zine-finger-protein zinc-finger-regions zinc-finger-domain

zinc-finger-protein zinc-finger-regions zinc-finger-domain
Table 1: A small extract showing how our terms could be inserted into GO

The terms are ranked by generality. The more fo the left, the more general is the term,

Terms belonging to GO are written with bold letters, terms we discovered and that are not in GO are in thin letters.

We insert a set of *** when we think that intermediate terms would be necessary to clarify the generality

relationship.

When a parent has several children, the parent is repeated,

A side effect of the way GO completes its ontology brings a further validation to our approach.
The queried terms are looked upon by GO’ keepers, and those worthwhile are added to the
ontology. We noticed that most of the terms we queried, and that were not in GO in October 02



are now inserted into it. We do not claim that our query is the reason why it was included, but we
claim that it shows that the terms we discovered in the texts are of interest to the Genomics
community.

Conclusion

The aim of this paper is showing that an automatic term generation is worthwhile if we want to
build accurate specialised ontologies. Our corpus is obviously incomplete but, since we obtained
good results from it, it shows that improving text analysis is at least as much important as text
gathering. For instance, now that our term generator is shown to work satisfactorily, we can apply
it to any new texts on the topic of Genomics, and be able to track the new terms appearing in the
literature on an almost daily basis. This is all the most interesting since even if the nomenclature
of genes and associated proteins for the well-known organism Saccharomyces cerevisiae is
already established, we should not forget that the current functional and structural genomiic
techniques leads to the determination of proteic functions hitherto unknown. Tt is thus of a great
interest to build methods enabling continuous work on the terminology extraction of such a field.
Similarly, applying our methodology to another subfield of biology might ask some more effort
in order to build several specific "BioBrill," but once this task is achieved, it becomes very easy
to gather terms specific to a specific area of Biology.
That GO be still incomplete is not the point we want to raise here. This is obvious, and GO itself
is constantly under improvement. The problem we raise as critics is rather the one of GO%
browser : in order to find a term in GO, it is necessary to query it exactly the way it is written,
including unexpected comas or hyphens. Instead of using (for instance) Google’s browser as a
solution, and when our terms are semantically equivalent to some of GO, ours being the ones of
the literature, they could be used as equivalent in order to directly improve GO’s browser.
GO being a specialised ontology, it contains many highly specialised terms, that is, terms made
of five or more words. Since we dealt with summaries only, the author do not use the terms in
their full extent, and we miss many of these terms. We are quite aware that we would much
improve our terminology by dealing with the full texts, and our pext effort will go in that
direction. In this way, we would be able to compare our results even to the more complete lists
available from E-BioSci, EMBO initiative at http://www.e-biogci.org to set up a platform that
will provide services relating to access and retrieval of digital information in the life sciences,
ranging from bibliographic or factual data to published full text.
Inversely, we find many general terms made of two or three words are not included in GO, which
is normal since GO is aimed at people that are supposed to know about these concepts. The use of
an ontology for information extraction, or any other automatic treatment of the texts, demands
completion, and this is another gain of our automated approach.
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FRAIGNIAUD P  |WITH SENSE-OF-DIRECTION
SANTORO N - |
1311 BARRIERE L CAPTURE OF AN INTRUDER BY MOBILE 16 PAGES 04/2002
FLOCCHINI P AGENTS ‘
FRAIGNIAUD P
_ SANTORO N
1312 ALLARD G ' ANALYSIS OF THE OSSC MECHANISM IN A 12PAGES | 04/2002
! | AL AGHA K : NON-SYNCHRONOUS TRANSMISSION ;
1 : "ENVIRONMENT _ |
11313 FOREST J . AWEAK CALCULUS WITH EXPLICIT 70PAGES |  05/2002
' - OPERATORS FOR PATTERN MATCHING AND
7 - SUBSTITUTION
11314 COURANT J ' STRONG NORMALIZATION WITH SINGLETON 19 PAGES 05/2002
| i TYPES
1815, COURANT J EXPLICIT UNIVERSES FOR THE CALCULUS OF | 21 PAGES 05/2002
‘ 'CONSTRUCTIONS ‘
11316 | KOUIDER M 'STABILITY NUMBER AND (a,b)}-FACTORS IN ~ 12PAGES = 05/2002
- LONC Z ' GRAPHS : :
URBAIN X MODULAR AND INCREMENTAL PROOFSOF -~ | 20 PAGES .  05/2002
|
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|1318 THICN V A STRATEGY FOR FREE-VARIABLE 12 PAGES 05/2002
. TABLEAUX FOR VARIANTS OF QUANTIFIED
N | MODAL LOGICS A
1319  LESTIENNES G i TESTING PROCESSES FROM FORMAL | 16 PAGES 05/2002
. GAUDEL M € SPECIFICATIONS WITH INPUTS, OUTPUTS :
| AND DATA TYPES |
1320 PENT C UTILISATION DES CONTEXTES ENRECHERCHE | 46 PAGES 05/2002 |
SPYRATOS N | DINFORMATIONS |
1321 DELORME C UPPER BOUNDS ON THE LENGTH OF THE 20 PAGES |  05/2002
SHU J LONGEST INDUGED CYCLE IN GRAPHS
1322 FLANDRIN E | ANOTE ON A GENERALISATION OF ORE'S BPAGES |  05/2002
LI H | CONDITION , '
MARCZYK A - ]
7 WOZNIAK M . o 1
1323| BACSO G ' INDEPENDENCE, IRREDUNDANCE, DEGREES | 8 PAGES 05/2002
FAVARON O | AND CHROMATIC NUMBER IN GRAPHS
1322 DATTA A K | SELF-STABILIZING WORMHOLE ROUTINGON | 20 PAGES 06/2002
GRADINARIU M |RINGNETWORKS -
KENITZKI A B | . \
TIXEUIL S ; _
1325] DELAET S | ACTES DE LA JOURNEE RESEAUX ET 52 PAGES 06/2002
! HERAULT T | ALGORITHMES REPARTIS, 20 JUIN 2002 . |
; JOHNEN C : i
| TIXEUIL S : | _
1326 URBAIN X | MODULAR AND INCREMENTAL AUTOMATED | 32 PAGES 06/2002 -
| | TERMINATION PROOFS
1327 ! BEAUQUIER J | ANALYZE OF RANDOMIZED SELF-STABILIZING| 18 PAGES 06/2002
; JOHNEN C | ALGORITHMS UNDER NON-DETERMINISTIC
| | SCHEDULER CLASSES ! ;
1328 LI H ' PARTITIONING A STRONG TOURNAMENT INTO! 14 PAGES | = 07/2002
;‘ SHU J 'k CYCLES | ! |
1329, BOUCHERON S  'RAPPORTSCIENTIFIQUEPRESENTEPOUR = 97PAGES ~ 08/2002 |
| ' L'OBTENTION D'UNE HABILITATION A DIRIGER| : |
; : | DESRECHERCHES ! |
1330 JOHNEN © | OPTIMIZATION OF SERVICE TIME AND . 21PAGES |  09/2002
| |MEMORY SPACE IN A SELF-STABILIZNG | |
' TOKEN GIRCULATION PROTOCOL ON | |
: " ANONYMOUS UNIDIRECTIONAL RINGS | |
1331 LI H 'CYCLIC PARTITION OF STRONG ~ 15PAGES - 09/2002
| : SHU J TOURNAMENTS |
1332 TZITZIKAS Y RESULT FUSION BY MEDIATORS USING 30PAGES |  09/2002
| ' SPYRATOS N VOTING AND UTILITY EUNCTIONS : '
11333 AL AGHA K HAPPORT SCIENTIFIQUE PRESENTEPOUR ~ © 63PAGES ~ 10/2002
‘ : _L'OBTENTION D'UNE HABILITATION A DIRIGER: .
| : DES RECHERCHES
{1334 ALVAREZ-HAMELIN J' REDUCING PACKET-LOSS BY TAKING LONG 20 PAGES 10/2002
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|1335 EGAWA Y TWO-FACTORS EACH COMPONENT OF WHICH | 16 PAGES 10/2002
C ENOMOTO H CONTAINS A SPECIFIED VERTEX
FAUDREE R J
Ll H
SCHIERMEYER 1
1336 Ll H ANOTE ON GRAPHS CONTAINING ALLTREES | 10 PAGES 10/2002
WOZNIAK M OF GIVEN SIZE _
1337)  ENOMOTO H PARTITION OF AGRAPH INTOCYCLESAND | 10 PAGES 10/2002
LI H DEGENERATED CYCLES | |
1338] BALISTER P N | BALANCED EDGE COLORINGS 20 PAGES 10/2002
KOSTOCHKA A V |
LI H
SCHELP R H
1339] HAGGKVIST R |LONGGYCLESINGRAPHSWITHSOMELARGE | 16 PAGES | 10/2002
Ll H DEGREE VERTICES
11340, DRACH-TEMAM N |RAPPORT SCIENTIFIQUE PRESENTE POUR 96 PAGES | 11/2002
‘ L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES
1341 FLANDRIN E  |ASUFFICIENT CONDITION FOR CYCLABILITY | 18 PAGES 12/2002
Ll H | INDIRECTED GRAPHS -
SHU J - |
1342 HU Z PARTITION OF A GRAPH INTO CYCLES AND | 16 PAGES 12/2002
Ll H VERTICES
1343|  DJELLOUL S MINIMUM k-SELF-REPAIRING GRAPHS 16 PAGES 12/2002
KOUIDER M






