A SUFFICIENT CONDITION FOR PANCYCLABILITY OF GRAPHS FLANDRIN E / LI H / WEI B Unité Mixte de Recherche 8623 CNRS-Université Paris Sud-LRI 01/2003 Rapport de Recherche N° 1345 CNRS – Université de Paris Sud Centre d'Orsay LABORATOIRE DE RECHERCHE EN INFORMATIQUE > Bâtiment 650 91405 ORSAY Cedex (France) ### A sufficient condition for pancyclability of graphs E. Flandrin, H. Li L.R.I., Bat. 490, Université de Paris-Sud, 91405 Orsay Cedex, France #### B. Wei ¹ Institute of Systems Science, Academy of Mathematics and System Sciences Chinese Academy of Sciences, Beijing 100080, China #### Abstract Let G be a graph of order n and S be a vertex set of q vertices. We call G S-pancyclable, if for any integer $3 \le i \le q$ there exists a cycle C in G such that $|V(C) \cap S| = i$. For any two nonadjacent vertices u, v of S, we say that u, v is of distance two in S, denoted by $d_S(u, v) = 2$, if there is a path P in G connecting u and v such that $|V(P) \cap S| \le 3$. In this paper, we will prove that if G is 2-connected and for any two vertices u, v of S with $d_S(u, v) = 2$, $max\{d(u), d(v)\} \ge \frac{n}{2}$, then there is a cycle in G containing all the vertices of S. Furthermore, if for any two vertices u, v of S with $d_S(u, v) = 2$, $max\{d(u), d(v)\} \ge \frac{n+1}{2}$, then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [2] for the case when S = V(G). #### Résumé Soit G un graphe d'ordre n et S un sous ensemble de V(G) de q sommets. G est dit S-pancyclable si, pour tout entier $i, 3 \leq i \leq q$, il existe dans G un cycle C tel que $|V(C) \cap S| = i$. Deux sommets non adjacents u et v de S sont dits à distance deux dans S (notation : $d_S(u,v)=2$) s'il existe un chemin P dans G connectant u et v tels que $|V(P) \cap S| \leq 3$. Dans cet article nous démontrerons que si G est 2-connexe tel que toute paire de sommets u, v de S non adjacents à distance deux vérifie $\max\{d(u),d(v)\}\geq \frac{n}{2}$, alors G possède un cycle qui contient tous les sommets de S. De plus, si toute paire de sommets u, v de S non adjacents à distance deux vérifie $\max\{d(u),d(v)\}\geq \frac{n+1}{2}$, alors G est S-pancyclable à moins que le sous graphe induit par S n'appartienne à une classe de graphes spéciaux. Cela généralise un résulatt de Fan [2] pour le cas où S=V(G) **Keywords:** cycles, hamiltonian graphs, pancyclic graphs, cyclability, pancyclability AMS Classification: 05C38, 05C45. ¹the work was partially done during the author was visiting L.R.I. by a cooperation program supported by NNSF of China and CNRS of France #### 1 Preliminaries and Main Results We consider only finite undirected graphs without loops or multiple edges. The set of vertices of a graph G is denoted by V(G) or just by V; the set of edges by E(G) or just by E. We use |G| (the order of G) as a symbol for the cardinality of V(G). If H and S are subsets of V(G) or subgraphs of G, we denote by $N_H(S)$ the set of vertices in H which are adjacent to some vertex in S, and set $d_H(S) = |N_H(S)|$. In particular, when H = G, $S = \{u\}$, then let $N_G(u) = N(u)$ and set $d_G(u) = d(u)$. Paths and cycles in a graph G are considered as subgraphs of G. We use G[S] to denote the subgraph induced by S. For a cycle C in G with a given orientation and X a subset of V(C), X^+ and X^- are the set of the successors and the predecessors of the vertices of X in C, respectively, and for a and b in C, we define C[a,b] (C[a,b), C(a,b), respectively) to be the subpath of C from a to b (from a to b^- , from a^+ to b^- , respectively). We will write $N_C^+(x)$ for $(N_C(x))^+$. Other notation can be found in [1]. Let S be a vertex set of G; v is called an S-vertex if $v \in S$. Following [3, 5], the set S is called cyclable in G if all vertices of S belong to a common cycle in G. Following [4], the S-length of a cycle in G is defined as the number of the S-vertices that it contains and the graph G is said to be S-pancyclable, if it contains cycles of all S-lengths from S to |S|. Obviously, if S is S if S is pancyclic, i.e., S contains cycles of every length between S and S in S is pancyclic, i.e., S contains cycles of every length between S and S is S. For any two nonadjacent vertices u, v of S, we say that u, v is of distance two in S, denoted by $d_S(u, v) = 2$, if there is a path P in G connecting u and v such that $|V(P) \cap S| \leq 3$. If S = V(G), set $d(u, v) = d_{V(G)}(u, v)$. Given an integer $r \geq 2$, F_{4r} is the graph with 4r vertices containing a complete graph K_{2r} , a set of r independent edges, denoted by E_r and a matching between the sets of vertices of K_{2r} and E_r (cf. [2]). People have given different definitions and results on cycles containing certain subsets of vertices and the related papers can be found in [3, 4, 5, 6, 7]. In this paper, we will prove the followings: **Theorem 1.** Let G be a 2-connected graph of order n and S be a vertex set of G with $|S| = q \ge 3$. If $\max\{d(u), d(v)\} \ge \frac{n}{2}$ holds for any u, v of S with $d_S(u, v) = 2$, then S is cyclable in G. **Theorem 2.** Let G be a 2-connected graph of order n and S be a vertex set of G with $|S| = q \ge 3$. If $\max\{d(u), d(v)\} \ge \frac{n+1}{2}$ holds for any u, v of S with $d_S(u, v) = 2$, then G is S-pancyclable unless q = 4r and G[S] is a spanning subgraph of F_{4r} . Theorem 1 generalizes the following result of Fan[2] for the case when S = V(G). **Theorem 3.** Let G be a 2-connected graph of order n. If $\max\{d(u), d(v)\} \geq \frac{n}{2}$ holds for any u, v of G with d(u, v) = 2, then G is hamiltonian. Notice that $max\{d(v): v \in V(F_{4r})\} = 2r$. By Theorem 2, we have Corollary 4. Let G be a 2-connected graph of order n. If $\max\{d(u),d(v)\}\geq \frac{n+1}{2}$ holds for any u, v of G with d(u, v) = 2, then G is pancyclic. #### 2 Proof of Theorem 1 Let $T_1 = \{v \in S : d(v) \geq \frac{n}{2}\}$. Since G is 2-connected, it is easy to check that Theorem 1 holds if $|T_1| \leq 1$ (which implies that $G[S-T_1]$ is a clique). Thus we may assume the $|T_1| \geq 2$. In order to prove Theorem 1, we first show the following: **Lemma 1.** Let P be a path connecting u and v in G. If $d_P(u) + d_P(v) \ge |P|$, then there exists a cycle C in G such that V(C) = V(P). **Proof.** If $uv \in E$, then Lemma 1 holds. If $uv \notin E(G)$, then there exist two consecutive vertices x, y (y is the successor of x on P from u to v) such that $x \in N(v)$ and $y \in N(u)$. Hence there exists a cycle C in G such that V(P) = V(C). **Lemma 2.** Let u, v in T_1 such that $uv \notin E(G)$ and G' be a graph by adding uv to G. If there exists a cycle C' in G' such that $S \subseteq V(C')$, then there exists a cycle C in G such that $S \subseteq V(C)$. **Proof.** Let C' be the cycle in G' such that $S \subseteq V(C')$. Then $uv \in E(G'[C'])$, otherwise C' = C is the required cycle in G. Thus there exists a path P starting from u and ending at v in G such that $S \subseteq V(P)$. If $N_{G-P}(u) \cap N_{G-P}(v) \neq \emptyset$, then Lemma 2 holds. If $N_{G-P}(u) \cap N_{G-P}(v) = \emptyset$, then $d_P(u) + d_P(v) \geq |P|$ as $\{u,v\} \subseteq T_1$. Hence Lemma 2 holds by Lemma 1. By Lemma 2, we may assume that $G[T_1]$ is a clique of G. Let C be a cycle containing T_1 such that $|V(C) \cap S|$ as large as possible. If $|V(C) \cap S| = q$, then Theoreom 1 holds. If $|V(C) \cap S| \leq q-1$, let $u \in S \cap V(G-C)$. Since G is 2-connected, there are two disjoint paths in G-C connecting u and two distinct vertices of C, say w_1 and w_2 , respectively. As $T_1 \subseteq V(C)$, we have $u \in S - T_1$. By the choice of C, $V(C(w_1, w_2)) \cap S \neq \emptyset$ and $V(C(w_2, w_1)) \cap S \neq \emptyset$. Let x_1 be the first vertex of $V(C(w_1, w_2)) \cap S$ from w_1 to w_2 and x_2 be the first vertex of $V(C(w_2, w_1)) \cap S$ from w_2 to w_1 . If $x_i \notin T_1$ for some $1 \leq i \leq 2$, then $ux_i \in E$, which is impossible by the choice of C. Thus $x_i \in T_1$ for all $1 \leq i \leq 2$. Since $G[T_1]$ is a clique, we can get a cycle C' in G such that $T_1 \subseteq V(C')$ and $|V(C') \cap S| > |V(C) \cap S|$, contrary to the choice of C. Hence Theorem 1 is true. #### 3 Proof of Theorem 2 By Theorem 1, there exists a cycle in G containing all the vertices of S. Choose such a cycle C with as few vertices as possible and give C an arbitary orientation. Put R = G - C. Let x_1, x_2, \dots, x_q be the vertices of $V(C) \cap S$, the order $1, 2, \dots, q$ respecting the orientation of C, and consider the subscripts modulo q. Two S-vertices x_i and x_{i+1} are said to be S-consecutive. We use C_l for a cycle of S-length l in G. In [4], it was proved: **Theorem 5.** Let G be a graph of order n, S a subset of V(G) such that S is cyclable in G, and let C be a shortest cycle through all the vertices of S. If $d_C(x) + d_C(y) \ge |C| + 1$ for some pair of S-consecutive vertices x and y in C, then G is S-pancyclable. By using the same method as that used in the proof of Theorem 5 in [4], we can get **Lemma 3.** Let G be a graph of order n, S a subset of V(G) such that S is cyclable in G, and let C be a shortest cycle through all the vertices of S. If there exist some $1 \le i \le q$ such that $x_{i-1}x_{i+1} \in E$ and $d_C(x_i) \ge \frac{|C|+1}{2}$, then G is S-pancyclable. The following lemma is easy to check. **Lemma 4.** Let P be a path connecting two vertices u_1 and u_t of S and $V(P) \cap S = \{u_1, u_2, \dots, u_t\}$ (the order $1, \dots, t$ respecting the orientation of P from u_1 to u_t). If there exists some $1 \le i \le t - p$ ($p \le t - 3$) such that there exists a path connecting u_i and u_{i+p+1} with the internal vertices, if any, in $V(G) - (S \cup V(P))$, then there exists a path P' connecting u_1 and u_t in G such that $|V(P') \cap S| = t - p$. Now, let $T_2 = \{v \in S : d(v) \ge \frac{n+1}{2}\}$. It is easy to see the following **Remark 1.** If there is no any pair of S-consecutive vertices x, y in $C[x_i, x_j]$ $(i \neq j)$ such that $\{x, y\} \subseteq T_2$, then $G[V(C[x_i, x_j]) \cap (S - T_2)]$ is a clique of G. If there exists at most one pair of S-consecutive vertices which are both in T_2 , then it is easy to check that G is S-pancyclable as $G[S-T_2]$, by Remark 1, is a clique unless |S|=4 and G[S] is a spanning subgraph of F_4 . Thus Theorem 2 is true. Hence we may assume that $|T_2| \geq 3$ and there exist at least two pairs of S-consecutive vertices which are all in T_2 . Without loss of generality, let $\{x_q, x_1\} \subseteq T_2$ such that $|N_R(x_1)\cap N_R(x_q)|=min\{|N_R(x)\cap N_R(y)|:x,y\in T_2 \text{ and } x,y \text{ are } S\text{-consecutive}\}.$ If $d_C(x_1)+d_C(x_q)\geq |C|+1$, then Theorem 2 holds. Thus in the rest of the proof, we assume that $d_C(x_1)+d_C(x_q)\leq |C|$ and let $M_1=N_R(x_1)\cap N_R(x_q)$. We first show the following lemmas. **Lemma 5.** If there is a path $P = u_1 \cdots u_2 \cdots u_{p-1} \cdots u_p$ in G[V(C)] such that $|V(P) \cap S| = l+1 \geq 4$, $\{u_1, u_2, u_{p-1}, u_p\} \subseteq T_2$ and $\{u_1, u_2\}$, $\{u_{p-1}, u_p\}$ are two pairs of S-consecutive vertices on C, then there exists a C_l in G. **Proof.** If $N_R(u_1) \cap N_R(u_{p-1}) \neq \emptyset$ or $N_R(u_2) \cap N_R(u_p) \neq \emptyset$, then Lemma 5 holds. If $N_R(u_1) \cap N_R(u_{p-1}) = \emptyset$ and $N_R(u_2) \cap N_R(u_p) = \emptyset$, noting that $\{u_1, u_2, u_{p-1}, u_p\} \subseteq T_2$, we have $$d_C(u_1) + d_C(u_2) + d_C(u_{p-1}) + d_C(u_p) \ge 2(|C|+1).$$ Thus either $d_C(u_1) + d_C(u_2) \ge |C| + 1$ or $d_C(u_{p-1}) + d_C(u_p) \ge |C| + 1$. By Theorem 5, G is S-pancyclable. Hence Lemma 5 holds. \Box **Lemma 6.** Let $P = u_1 \cdots u_p$ in G such that $|V(P) \cap S| = l \geq 3$. If $\{u_1, u_p\} \subseteq T_2$ and there is no any C_l in G, then we have (i) $$|(N(u_1) \cap N(u_p) - V(P)) \cap (V(G) - S)| = \emptyset;$$ - (ii) $|N(u_1) \cap N(u_p) \cap S \cap (V(G) V(P))| \ge 2$; and there exist a C_4 and a C_{l+1} which contains P as its subpath; - (iii) when $P = C[x_i, x_j]$ for some j = l + i 1 $(3 \le l \le q 1)$ and $\{x_i, x_j\} \subseteq T_2$, then there exists a pair of S-consecutive vertices y and z in $V(C(x_j, x_i))$ such that $y \in N(x_i)$ (or $y \in N(x_j)$ and $z \in N(x_j)$ (or $z \in N(x_i)$), and there exists a C_{l+2} which contains $C[x_i, x_j]$ as its subpath. **Proof.** Since there is no any C_l in G, (i) is obvious and $|N(u_1) \cap V(P)| + |N(u_p) \cap V(P)| \le |V(P)| - 1$ by Lemma 1. As $d(u_1) + d(u_p) \ge n + 1$, by (i), it is easy to check that (ii) holds. - (iii) As $d(x_i)+d(x_j) \geq n+1$, by Lemma 1 and (i), we have $|N(x_i)\cap V(C(x_j,x_i))\cap S|+|N(x_j)\cap V(C(x_j,x_i))\cap S|\geq |V(C(x_j,x_i))\cap S|+2$. Thus (iii) holds. \Box - **Lemma 7.** Let $P = u_1u_2 \cdots u_p$ be a path in G[V(C)] such that $V(P) \cap S = \{v_1, v_2, \cdots, v_l\}$, where $v_1 = u_1$, $v_l = u_p$ and the order $1, 2 \cdots, l$ respects the orientation of P from u_1 to u_p . Suppose that $l \geq 5$ and there is no any C_l in G. If there exist a C_{l+m} and a C_{l+m+1} in G $(m \in \{1,2\})$, both of which contain P as their subpath and $|V(C_{l+m}) \cap S V(C_{l+m+1}) \cap S| \leq 1$, then $\{v_i, v_{i+m+2}\} \cap (S T_2) \neq \emptyset$ for any $1 \leq i \leq l-m-2$. **Proof.** Let $C' = C_{l+m+1}$ and $C^* = C_{l+m}$. Since P is a subgraph of both C' and C^* , we have $C'[v_i, v_{i+m+2}] = C^*[v_i, v_{i+m+2}] = P[v_i, v_{i+m+2}]$. Since there is no any C_l in G and $i \leq l-m-2$, we obtain $N_R(v_i) \cap N_R(v_{i+m+2}) = \emptyset$ and $(N(v_i) \cap V(C'(v_{i+2}, v_{i+m+2}))) \cup (N(v_{i+m+2}) \cap V(C'(v_i, v_{i+2}))) = \emptyset$, which implies $|(N(v_i) \cup N(v_{i+m+2})) \cap V(C'(v_i, v_{i+m+2}))| \leq |V(C'(v_i, v_{i+m+2}))|$. Notice that $P' = C'[v_{i+m+2}, v_i]$ is a path with $|V(P') \cap S| = l$. By Lemma 1, $d_{C'}(v_i) + d_{C'}(v_{i+m+2}) < |C'|$. If $\{v_i, v_{i+m+2}\} \subseteq T_2$, then there exists at least two vertices, say x and y in $N(v_i) \cap N(v_{i+m+2}) \cap (V(C) - V(C'))$. When $x \notin S$ or $y \notin S$, then there is a C_l which contains $(V(C') - V(C'(v_i, v_{i+m+2})))$ and x (or y), a contradiction. When $\{x, y\} \subseteq S$, then $|\{x, y\} \cap V(C^*)| \le 1$, as $\{x, y\} \subseteq V(C) - V(C')$ and $|V(C^*) \cap S - V(C') \cap S| \le 1$. Thus we can also get a C_l in G, a contradiction. Hence $\{v_i, v_{i+m+2}\} \cap (S - T_2) \ne \emptyset$ and Lemma 7 holds. \square **Lemma 8.** If there exists some i > 1 such that $\{x_i, x_{i+1}\} \subseteq T_2$ and $d_C(x_i) + d_C(x_{i+1}) \leq |C|$, then - (i) $|(N_R(x_1) \cup N_R(x_q)) \cap N_R(x_i) \cap N_R(x_{i+1})| \ge 1;$ - (ii) there exist a cycle C_3 and a cycle C_4 in G. **Proof.** (i) Recall that $M_1 = N_R(x_1) \cap N_R(x_q)$. By the choice of x_1 and x_q , we have $|M_1| \leq |N_R(x_i) \cap N_R(x_{i+1})|$. Thus $|R|+1 \leq |N_R(x_1) \cup N_R(x_q)| + |M_1| \leq |N_R(x_1) \cup N_R(x_q)| + |N_R(x_i) \cap N_R(x_{i+1})| = |(N_R(x_1) \cup N_R(x_q)) \cup (N_R(x_i) \cap N_R(x_{i+1}))| + |(N_R(x_1) \cup N_R(x_q)) \cap N_R(x_i) \cap N_R(x_{i+1})| \leq |R| + |(N_R(x_1) \cup N_R(x_q)) \cap N_R(x_i) \cap N_R(x_{i+1})|.$ ¿From the inequalities above, we can easily check that (i) holds. (ii) Suppose that there is no any C_l in G for l=3 or l=4. Since $(N_R(x_1) \cup$ $N_R(x_q)) \cap N_R(x_i) \cap N_R(x_{i+1}) \neq \emptyset$, without loss of generality, we may choose a vertex, say v, in $N_R(x_q) \cap N_R(x_i) \cap N_R(x_{i+1})$. Notice that $\{x_q, x_1, x_i, x_{i+1}\} \subseteq T_2$. Applying Lemma 6(ii) to the path $C[x_i, x_{i+1}]vx_q$ or the path $C[x_i, x_{i+1}]vC[x_q, x_1]$, we can get a C_3 and a C_4 in G, a contradiction. \square **Lemma 9.** If there is no any C_l in G for some integer $l \geq 3$, then l = q - 1. **Proof.** By contradiction, assume that $3 \le l \le q - 2$. Then by Theorem 5, for any pair of S-consecutive vertices x and y in C, we have $d_C(x) + d_C(y) \le |C|$. Thus by the assumption and Lemma 5 , $M_1 \neq \emptyset$, $d_C(x_1) + d_C(x_q) \leq |C|$, and $|\{x_{l-1},x_l\} \cap T_2| \leq 1$. Case 1. $x_l \in T_2$. Then $x_{l-1} \notin T_2$. If $x_{l+1} \notin T_2$, then $x_{l-1}x_{l+1} \in E$ and there exists a C_3 in G. By Lemma 3, $d_R(x_l) \ge \frac{|R|+1}{2}$. Since $N_R(x_l) \cap N_R(x_1) = \emptyset$ and $d_R(x_1) + d_R(x_q) \ge |R|+1$, we have $2|R| + |N_R(x_q) \cap N_R(x_l)| \ge |N_R(x_1) \cup N_R(x_l)| + |N_R(x_q) \cup N_R(x_l)| + |N_R(x_q) \cap N_R(x_l)| \ge d_R(x_1) + d_R(x_q) + 2d_R(x_l) \ge 2|R| + 2,$ which implies $|N_R(x_q) \cap N_R(x_l)| \geq 2$ and there exist a C_{l+1} and a C_{l+2} , both of which contain $C[x_q, x_{l-1}]$ as their subpath and $V(C_{l+1}) \cap S \subseteq V(C_{l+2})$. As $\{x_1, x_l\} \subseteq T_2$, by Lemma 6(ii), we have $l \geq 5$ and by Lemma 7, we have $\{x_3, x_4\} \subseteq S - T_2$ which implies $x_2 \in T_2$. When $l \geq 6$, then $x_5 \in S - T_2$ by Lemma 7 which implies $x_3x_5 \in E$ and we can get a C_l in G, a contradiction. When l = 5, that is, $x_5 \in T_2$, since there is no any C_5 in G, we obtain $N(x_2) \cap V(C(x_3, x_5)) = \emptyset$ and $N(x_5) \cap V(C[x_2, x_4)) = \emptyset$. As $d(x_2) + d(x_5) \geq n + 1$, there exits some vertex, say v in $N(x_2) \cap N(x_5) - V(C[x_2, x_5])$. Thus we can get a C_5 which contains either $V(C[x_2, x_6]) \cup \{v\}$ whenever $v \notin S$ or $V(C[x_2, x_5]) \cup \{v\}$ whenever $v \in S$, a contradiction. Hence we have $x_{l+1} \in T_2$. Since there is no any C_l in G, we have $N_R(x_1) \cap N_R(x_l) = \emptyset$ and by Lemma 1, $d_C(x_l) + d_C(x_{l+1}) \leq |C|$. Thus we obtain that $|N_R(x_q) \cap N_R(x_l) \cap N_R(x_{l+1})| \geq 1$ and $l \geq 5$ by Lemmaa 8. Hence there exist a C_{l+1} and a C_{l+2} , which contain $C[x_q, x_l]$ as their subpath. Since $l \geq 5$, by the assumption and Lemma 7, we obtain $\{x_3, x_4\} \subseteq S - T_2$. By Lemma 5, $x_2 \in S - T_2$ which implies $x_2x_4 \in E$. Thus we can get a C_l in G, a contradiction. Case 2. $x_l \notin T_2, x_{l-1} \in T_2$. By Lemmas 3 and 5, $x_{l-2} \in T_2$ (otherwise $x_l x_{l-2} \in E$, $d_C(x_{l-1}) \geq \frac{|C|+1}{2}$, since $(N_R(x_1) \cup N_R(x_q)) \cap N_R(x_{l-1}) = \emptyset$ by the assumption and $|N_R(x_1) \cup N_R(x_q)| \geq \frac{|R|+1}{2}$). Noting that $N_R(x_q) \cap N_R(x_{l-1}) = \emptyset$, by Lemma 8, $|N_R(x_1) \cap N_R(x_{l-1}) \cap N_R(x_{l-2})| \geq 1$ and $l \geq 5$. As $\{x_q, x_{l-1}\} \subseteq T_2$, by Lemma 6(ii) and 6(iii), we have $l \geq 6$ and there exist a C_{l+1} and a C_{l+2} which contain $C[x_q, x_{l-1}]$ as their subpath and $|V(C_{l+1}) \cap S - V(C_{l+2}) \cap S| \leq 1$. Thus by Lemma 7, we can get $\{x_3, x_4\} \subseteq S - T_2$ and $\{x_2, x_5\} \cap (S - T_2) \neq \emptyset$. Thus we can get a C_l in C_l , a contradiction. Case 3. $\{x_l, x_{l-1}\} \cap T_2 = \emptyset$. Case 3.1. There is no any pair of S-consective vertices x and y in $V(C[x_{l+1}, x_{q-1}])$ such that $\{x, y\} \subseteq T_2$. Then $G[V(C[x_{l-1}, x_{q-1}]) \cap (S - T_2)]$ is a clique by Remark 1. Since $l \leq q - 2$, $|V(C[x_{l-1}, x_{q-1}]) \cap S| \geq 3$. If $x_{q-1} \notin T_2$, then $x_{l-1}x_{q-1} \in E$ and $x_lx_{q-1} \in E$. Thus there exist a C_3 , and two cycles C_{l+1} , C_{l+2} in G[V(C)], which contain $C[x_{q-1}, x_{l-1}]$ as their subpath. Thus $l \geq 4$ and $\{x_{l-2}, x_{l-3}\} \subseteq T_2$. By Lemma 7, we have $\{x_3, x_4\} \subseteq S - T_2$ which implies $x_2 \in T_2$. When $l \geq 5$, by Lemma 7, $x_5 \in S - T_2$ implying $x_3x_5 \in E$ and we can get a C_l in G, a contradiction. Thus l = 4. Since there is no any C_4 in G, we have $x_qx_2 \notin E$, $N(x_q) \cap V(C(x_1, x_3]) = \emptyset$ and $N(x_2) \cap V(C[x_{q-1}, x_1)) = \emptyset$, as $\{x_3, x_4\} \subseteq N(x_{q-1})$. Thus by Lemma 1, $|N(x_q) \cap V(C[x_{q-1}, x_4])| + |N(x_2) \cap V(C[x_{q-1}, x_4])| \leq |V(C[x_{q-1}, x_4])|$. Since $d(x_q) + d(x_2) \geq n + 1$, we obtain $N(x_2) \cap N(x_q) - V(C[x_4, x_{q-1}]) \neq \emptyset$. Let w in $N(x_2) \cap N(x_q) - V(C[x_4, x_{q-1}])$ and we can get a C_4 in G, which contains $V(C[x_q, x_2]) \cup \{w\}$ when $w \in S$ or $V(C[x_{q-1}, x_q]) \cup \{v\}$ when $v \notin S$, a contradiction. If $x_{q-1} \in T_2$, then $x_{q-2} \in S - T_2$ as there is no any pair of S-consecutive vertices in $V(C[x_{l+1}, x_{q-1}]) \cap T_2$, and $x_{l-1}x_{q-2} \in E$, $x_lx_{q-2} \in E$. Thus there exist a C_3 and a C_{l+2} in G which contains $C[x_{q-2}, x_{l-1}]$ as its subpath. When $x_{l-2} \notin T_2$, then $x_{l-2}x_{q-2} \in E$ and there exist a C_4 and a C_{l+1} in G which contains $C[x_{q-2}, x_{l-2}]$ as its subpath. When $x_{l-2} \in T_2$, since $x_{q-1} \in T_2$, by Lemma 6(ii), there exist a C_4 and C_{l+1} in G which contains $C[x_{q-1}, x_{l-2}]$ as its subpath. Thus in both subcases, we have $l \geq 5$ and $|V(C_{l+1}) \cap S - V(C_{l+2}) \cap S| \leq 1$. Ey using Lemma 7, we can get $\{x_2, x_3, x_4\} \subseteq S - T_2$ and $x_2x_4 \in E$ which implies there exists a C_l in G, a contradiction. Case 3.2. There exists a pair of S-consecutive vertices x and y in $V(C[x_{l+1}, x_{q-1}])$ such that $\{x, y\} \subseteq T_2$. Choose $q-1>t\geq l+1$ such that x_t and x_{t+1} is a pair of S-consecutive vertices and t as small as possible. Then by Remark 1, we have $G[V(C[x_{l-1},x_t))\cap S]$ is a clique of G which implies $x_{t-1}x_{l-1}\in E$. Let $P=C[x_1,x_{l-1}]x_{t-1}$. By Lemma 8, $|(N_R(x_1)\cup N_R(x_q))\cap N_R(x_t)\cap N_R(x_{t+1})|\geq 1$ and $l\geq 5$. We distinguish the following two subcases. Case 3.2.1. $|(N_R(x_1) \cap N_R(x_t) \cap N_R(x_{t+1})| \ge 1$. Then we can get a C_{l+1} and a C_{l+2} in G, both of which contain P as their subpath. Notice that $l \geq 5$. By Lemma 7, we have $x_4 \in S - T_2$ which implies $x_2 \in T_2$ by the assumption. Using Lemma 5 to the path $P' = C[x_2, x_{l-1}]C[x_{l-1}, x_{l+1}]$, we have $x_3 \in S - T_2$ as $\{x_2, x_{l+1}, x_t\} \in T_2$. Thus by Lemma 7, $x_j \subseteq S - T_2$ and $x_3x_j \in E$, where j = 5 when $l \geq 6$ or j = t - 1 when l = 5. Hence there is a C_l in G, a contradiction. Case 3.2.2. $|(N_R(x_1) \cap N_R(x_t) \cap N_R(x_{t+1})| = 0.$ By Lemma 8(i), we have $|(N_R(x_q) \cap N_R(x_t) \cap N_R(x_{t+1}))| \ge 1$. Then there exist a C_{l+2} and a C_{l+3} which satisfy the conditions of Lemma 7. Since $l \ge 5$, we have $\{x_4, x_j\} \subseteq S - T_2$ (j = 5 when l > 5 and j = t - 1 when l = 5), which implies $x_2 \in T_2$. For the same reason as above, we have $x_3 \notin T_2$ by Lemma 5 and $x_3x_j \in E$. Since $\{x_2, x_t\} \subseteq T_2$, applying Lemma 6(ii) to the path $P^* = C[x_2, x_{l-1}]C[x_{t-1}, x_t]$, we have $N(x_2) \cap N(x_t) \cap (V(G) - V(P^*)) \cap S \neq \emptyset$. Notice that $x_3x_j \in E$, we can get a C_l in G, a contradiction. \square Now, we turn to prove Theorem 2. By Lemma 9, there exists a C_l in G for $3 \le l \le q-2$. If there exists some $1 \le i \le q$ such that $x_{i-1}x_{i+1} \in E$ or $N_R(x_{i-1}) \cap N_R(x_{i+1}) \ne \emptyset$, then there exists a C_{q-1} and Theorem 2 holds. Thus we may assume that for any $1 \le i \le q$, $x_{i-1}x_{i+1} \notin E$ and $N_R(x_{i-1}) \cap N_R(x_{i+1}) = \emptyset$. Hence for any $1 \le i \le q$, we have $\{x_{i-1}, x_{i+1}\} \cap T_2 \ne \emptyset$. If there exists some $1 \leq i \leq q$ such that $\{x_{i-1}, x_{i+1}\} \subseteq T_2$, then $d_C(x_{i-1}) + d_C(x_{i+1}) \geq |C| + 1$ which implies $N_C^+(x_{i-1}) \cap N(x_{i+1}) \cap V(C[x_{i+1}, x_{i-1}]) \neq \emptyset$. Hence we can get a C_{q-1} in G and Theorem 2 holds. If for any $1 \le i \le q$, $|\{x_{i-1}, x_{i+1}\} \cap T_2| = 1$, since $\{x_q, x_1\} \subseteq T_2$, we obtain that q = 4r, $\{x_2, x_3\} \subseteq S - T_2$, $\{x_{4t}, x_{4t+1}\} \subseteq T_2$ and $\{x_{4t+2}, x_{4t+3}\} \subseteq S - T_2$ implying that $x_{4t+2}x_{4t+3} \in E$ for any $1 \le t \le r-1$ by the choice of C. When there exist some m and t with $0 \le m < t \le r - 1$ such that $(N(x_{4m+2}) \cup N(x_{4m+3})) \cap \{x_{4t+2}, x_{4t+3}\} \ne \emptyset$, then $G[\{x_{4m+2}, x_{4m+3}, x_{4t+2}, x_{4t+3}\}]$ is a clique. Let $P = C[x_{4m+4}, x_{4t+2}]x_{4m+2}x_{4t+3}C(x_{4t+3}, x_{4m+1}]$. Then $|V(P) \cap S| = q - 1$. Since $\{x_{4m+1}, x_{4m+4}\} \subseteq T_2$, we have either $d_P(x_{4m+1}) + d_P(x_{4m+4}) \ge |P|$ or $N_{G-P}(x_{4m+1}) \cap N_{G-P}(x_{4m+4}) - \{x_{4m+3}\} \ne \emptyset$. Thus we can get a C_{q-1} in G by Lemma 1 or Lemma 6(i). When for any m and t with $0 \le m < t \le r - 1$, $(N(x_{4m+2}) \cup N(x_{4m+3})) \cap \{x_{4t+2}, x_{4t+3}\} = \emptyset$, then we can derive that G[S] is a spanning subgraph of F_{4r} and Theorem 2 holds. Therefore, the proof of Theorem 2 is complete. #### References - [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, Now York, 1976. - [2] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227. - [3] O. Favaron, E. Flandrin, H. Li, Y-P. Liu, F. Tian and Z-S. Wu, Sequences, claws and cyclability of graphs, J. Graph Theory 21 (4) (1996) 357-369. - [4] O. Favaron, E. Flandrin, H. Li and F. Tian, An Ore-type condition for pancyclability, Disrete Math. 206 (1999) 139–144. - [5] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Math. 145 (1995) 201-210. - [6] L. Stacho, Locally pancyclic graphs, J. Combin. Theory B 76 (1999) 22-40. [7] M.E. Watkins and D.M. Mesner, Cycles and connectivity in graphs, Can. J. Math. 19 (1967) 1319-1328. ## RAPPORTS INTERNES AU LRI - ANNEE 2002 | N° | Nom | Titre | Nbre de pages | Date parution | |------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------|---------------| | 1300 | COCKAYNE E J
FAVARON O
MYNHARDT C M | OPEN IRREDUNDANCE AND MAXIMUM DEGREE IN GRAPHS | 15 PAGES | 01/2002 | | 1301 | DENISE A | RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES | 81 PAGES | 01/2002 | | 1302 | CHEN Y H
DATTA A K
TIXEUIL S | STABILIZING INTER-DOMAIN ROUTING IN THE INTERNET | 31 PAGES | 01/2002 | | 1303 | DIKS K
FRAIGNIAUD P
KRANAKIS E
PELC A | TREE EXPLORATION WITH LITTLE MEMORY | 22 PAGES | 01/2002 | | 1304 | KEIICHIROU K
MARCHE C
URBAIN X | TERMINATION OF ASSOCIATIVE-COMMUTATIVE REWRITING USING DEPENDENCY PAIRS CRITERIA | 40 PAGES | 02/2002 | | 1305 | SHU J
XIAO E
WENREN K | THE ALGEBRAIC CONNECTIVITY, VERTEX CONNECTIVITY AND EDGE CONNECTIVITY OF GRAPHS | 11 PAGES | 03/2002 | | 1306 | LI H
SHU J | THE PARTITION OF A STRONG TOURNAMENT | 13 PAGES | 03/2002 | | 1307 | KESNER D | RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES | 74 PAGES | 03/2002 | | 1308 | FAVARON O
HENNING M A | UPPER TOTAL DOMINATION IN CLAW-FREE GRAPHS | 14 PAGES | 04/2002 | | 1309 | BARRIERE L
FLOCCHINI P
FRAIGNIAUD P
SANTORO N | DISTRIBUTED MOBILE COMPUTING WITH INCOMPARABLE LABELS | 16 PAGES | 04/2002 | | 1310 | BARRIERE L
FLOCCHINI P
FRAIGNIAUD P
SANTORO N | ELECTING A LEADER AMONG ANONYMOUS
MOBILE AGENTS IN ANONYMOUS NETWORKS
WITH SENSE-OF-DIRECTION | 20 PAGES | 04/2002 | | 1311 | BARRIERE L
FLOCCHINI P
FRAIGNIAUD P
SANTORO N | CAPTURE OF AN INTRUDER BY MOBILE AGENTS | 16 PAGES | 04/2002 | | 1312 | ALLARD G
AL AGHA K | ANALYSIS OF THE OSSC MECHANISM IN A NON-SYNCHRONOUS TRANSMISSION ENVIRONMENT | 12 PAGES | 04/2002 | | 1313 | FOREST J | A WEAK CALCULUS WITH EXPLICIT OPERATORS FOR PATTERN MATCHING AND SUBSTITUTION | 70 PAGES | 05/2002 | | 1314 | COURANT J | STRONG NORMALIZATION WITH SINGLETON TYPES | 19 PAGES | 05/2002 | | 1315 | COURANT J | EXPLICIT UNIVERSES FOR THE CALCULUS OF CONSTRUCTIONS | 21 PAGES | 05/2002 | | 1316 | KOUIDER M
LONC Z | STABILITY NUMBER AND (a,b)-FACTORS IN GRAPHS | 12 PAGES | 05/2002 | | 1317 | URBAIN X | MODULAR AND INCREMENTAL PROOFS OF AC-TERMINATION | 20 PAGES | 05/2002 | ### RAPPORTS INTERNES AU LRI - ANNEE 2002 | N° | Nom | Titre | Nbre de
pages | Date parution | |------|--|--|------------------|---------------| | 1318 | THION V | A STRATEGY FOR FREE-VARIABLE TABLEAUX FOR VARIANTS OF QUANTIFIED MODAL LOGICS | 12 PAGES | 05/2002 | | 1319 | LESTIENNES G
GAUDEL M C | TESTING PROCESSES FROM FORMAL SPECIFICATIONS WITH INPUTS, OUTPUTS AND DATA TYPES | 16 PAGES | 05/2002 | | 1320 | PENT C
SPYRATOS N | UTILISATION DES CONTEXTES EN RECHERCHE D'INFORMATIONS | 46 PAGES | 05/2002 | | 1321 | DELORME C
SHU J | UPPER BOUNDS ON THE LENGTH OF THE LONGEST INDUCED CYCLE IN GRAPHS | 20 PAGES | 05/2002 | | 1322 | FLANDRIN E
LI H
MARCZYK A
WOZNIAK M | A NOTE ON A GENERALISATION OF ORE'S CONDITION | 8 PAGES | 05/2002 | | 1323 | BACSO G
FAVARON O | INDEPENDENCE, IRREDUNDANCE, DEGREES AND CHROMATIC NUMBER IN GRAPHS | 8 PAGES | 05/2002 | | 1324 | DATTA A K
GRADINARIU M
KENITZKI A B
TIXEUIL S | SELF-STABILIZING WORMHOLE ROUTING ON
RING NETWORKS | 20 PAGES | 06/2002 | | 1325 | DELAET S
HERAULT T
JOHNEN C
TIXEUIL S | ACTES DE LA JOURNEE RESEAUX ET
ALGORITHMES REPARTIS, 20 JUIN 2002 | 52 PAGES | 06/2002 | | 1326 | URBAIN X | MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS | 32 PAGES | 06/2002 | | 1327 | BEAUQUIER J
JOHNEN C | ANALYZE OF RANDOMIZED SELF-STABILIZING
ALGORITHMS UNDER NON-DETERMINISTIC
SCHEDULER CLASSES | 18 PAGES | 06/2002 | | 1328 | LI H
SHU J | PARTITIONING A STRONG TOURNAMENT INTO k CYCLES | 14 PAGES | 07/2002 | | 1329 | BOUCHERON S | RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES | 97 PAGES | 08/2002 | | 1330 | JOHNEN C | OPTIMIZATION OF SERVICE TIME AND MEMORY SPACE IN A SELF-STABILIZING TOKEN CIRCULATION PROTOCOL ON ANONYMOUS UNIDIRECTIONAL RINGS | 21 PAGES | 09/2002 | | 1331 | LI H
SHU J | CYCLIC PARTITION OF STRONG TOURNAMENTS | 15 PAGES | 09/2002 | | 1332 | TZITZIKAS Y
SPYRATOS N | RESULT FUSION BY MEDIATORS USING VOTING AND UTILITY FUNCTIONS | 30 PAGES | 09/2002 | | 1333 | AL AGHA K | RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION À DIRIGER
DES RECHERCHES | 63 PAGES | 10/2002 | | 1334 | ALVAREZ-HAMELIN | J REDUCING PACKET-LOSS BY TAKING LONG RANGE DEPENDENCES INTO ACCOUNT | 20 PAGES | 10/2002 | | | FRAIGNIAUD P | | | | ### RAPPORTS INTERNES AU LRI - ANNEE 2002 | Ν° | Nom | Titre | Nbre de pages | Date parution | |------|---|--|---------------|---------------| | 1335 | EGAWA Y ENOMOTO H FAUDREE R J LI H SCHIERMEYER I | TWO-FACTORS EACH COMPONENT OF WHICH CONTAINS A SPECIFIED VERTEX | 16 PAGES | 10/2002 | | 1336 | LI H
WOZNIAK M | A NOTE ON GRAPHS CONTAINING ALL TREES
OF GIVEN SIZE | 10 PAGES | 10/2002 | | 1337 | ENOMOTO H
LI H | PARTITION OF A GRAPH INTO CYCLES AND DEGENERATED CYCLES | . 10 PAGES | 10/2002 | | 1338 | BALISTER P N
KOSTOCHKA A V
LI H
SCHELP R H | BALANCED EDGE COLORINGS | 20 PAGES | 10/2002 | | 1339 | HAGGKVIST R
LI H | LONG CYCLES IN GRAPHS WITH SOME LARGE DEGREE VERTICES | 16 PAGES | 10/2002 | | 1340 | DRACH-TEMAM N | RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES | 96 PAGES | 11/2002 | | 1341 | FLANDRIN E
LI H
SHU J | A SUFFICIENT CONDITION FOR CYCLABILITY IN DIRECTED GRAPHS | 18 PAGES | 12/2002 | | 1342 | HU Z
LI H | PARTITION OF A GRAPH INTO CYCLES AND VERTICES | 16 PAGES | 12/2002 | | 1343 | DJELLOUL S
KOUIDER M | MINIMUM k-SELF-REPAIRING GRAPHS | 16 PAGES | 12/2002 | | 1344 | MATTE-TAILLIEZ O
ROCHE M
KODRATOFF Y | A PRECISE AUTOMATIC EXTRACTION OF TERMINOLOGY IN GENOMICS | 14 PAGES | 12/2002 |