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Abstract

Let G be a graph of order » and-S be a vertex set of g vertices. We call G .
S-pancyclable, if for any intéger 3 < i < q there exists a cycle C in G such that
|[V(C)N S| = i. For any two nonadjacent vertices u,v of S, we say that u,v is of
distance two in §, denoted by ds(u,v) = 2, if there is a path P in G connecting u
and v such that |[V(P)N.S| < 3. In this paper, we will prove that if G is 2-connected
and for any two vertices u,v of S with dg(u,v) = 2, maz{d(u),d(v)} > §, then
there is a cycle in G containing all the vertices of §. Furthermore, if for any two
vertices u, v of § with dg(u,v) = 2, maz{d(u),d(v)} > 241, then G is S-pancyclable
unless the subgraph induced by S is in a class of special graphs. This generalizes a
result of Fan [2] for the case when S = V(G).

Résumé

Soit G un graphe d’ordre n et S un sous ensemble de V(G) de ¢ sommets. G est
dit S-pancyclable si, pour tout entier ¢, 3 < i < g, il existe dans G un cycle C tel que
|[V(C) N S| =i. Deux sommets non adjacents u et v de S sont dits & distance deux
dans S (notation : dg(u,v) = 2) s’il existe un chemin P dans G connectant v et v
tels que [V (P)N S| < 3. Dans cet article nous démontrerons que si G est 2-connexe
tel que toute paire de sommets u, v de S non adjacents a distance deux vérifie
maz{d(u),d(v)} > %, alors G posséde un cycle qui contient tous les sommets de S.
De plus, si toute paire de sommets u, v de S non adjacents & distance deux vérifie
maz{d(u),d(v)} > %£L, alors G est S-pancyclable & moins que le sous graphe induit
par S n’appartienne & une classe de graphes spéciaux. Cela généralise un résulatt
de Fan [2] pour le cas ou S = V(G)
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1 Preliminaries and Main Results

We consider only finite undirected graphs without loops or multiple edges. The
set of vertices of a graph G is denoted by V(G) or just by V; the set of edges by F(G)
or just by E. We use |G| (the order of @) as a symbol for the cardinality of V(G).
If H and S are subsets of V(G) or subgraphs of G, we denote by Ng(S) the set of
vertices in H which are adjacent to some vertex in S, and set dg(S) = [Ng(S5)|. In
particular, when H = G, S = {u}, then let Ng(u) = N(u) and set dg(u) = d(u).
Paths and cycles in a graph G are considered as subgraphs of G. We use G[S] to
denote the subgraph induced by S. : '

For a cycle C in G with a given orientation and X a subset of V(C), X+ and
X~ are the set of the successors and the predecessors of the vertices of X in C,
respectively, and for ¢ and b in C, we define C[a,b] (C[a,b), C(a,b), respectively)
to be the subpath of C from a to b (from a to b~, from a* to b~ réspectiveljr). We
will write N/ (z) for (No(z))*. Other notation can be found in [1}. :

Let S be a vertex set of G; v is called an S-vertez if v € S. Following [3, 5],
the set S is called cyclable in G if all vertices of S belong to a common cycle in G.
Following [4], the S-length of a cycle in G is defined as the number of the S-vertices
that it contains and the graph G is said to be S-pancyclable, if it contains cycles of
all S-lengths from 3 to |S|. Obviously, if G is V(G)-pancyclable, then G is pancyclic,
i.e., G contains cycles of every length between 3 and n.

For any two nonadjacent vertices u,» of S, we say that u,v is of distance two in
S, denoted by dg(u,v) = 2, if there is & path P in G connecting u and v such that
[V(P)N S| <3.If § = V(G), set d(u,v) = dyg)(u,v).

Given an integer 7 > 2, Fy, is the graph with 4r vertices containing a complete
graph Ko,, a set of r independent edges, denoted by E, and a matching between
the sets of vertices of Ky, and E, (cf. [2]).

People have given different definitions and results on cycles containing certain
subsets of vertices and the related papers can be found in [3, 4, 5, 6, 7]. In this
paper, we will prove the followings:

Theorem 1. Let G be a 2-connected graph of order n and S be a vertex set of G
with [S| = ¢ > 3. If maz{d(u),d(v)} > % holds for any u,v of S with dg(u,v) =2,
then S is cyclable in G.

Theorem 2. Let G be a 2-connected graph of order n and S be a vertex set of G
with |§| = ¢ > 3. If maz{d(u),d(v)} > % holds for any u, v of S with dg(u,v) =2,
then G is S-pancyclable unless ¢ = 4r and G[S] is a spanning subgraph of Fy,.

Theorem 1 generalizes the following result of Fan[2] for the case when S = V(G).

Theorem 3. Let G be a 2-connected graph of order n. If maz{d(u),d(v)} > §
holds for any u,v of G with d(u,v) = 2, then G is hamiltonian.

Notice that maz{d(v) : v € V(Fy.)} = 2r. By Theorem 2, we have
Corollary 4. Let G be a 2-connected graph of order n. If maz{d(u),d(v)} > 2



holds for any u,v of G with d(u,v) = 2, then G is pancyclic.

2 Proof of Theorem 1

Let Ty = {v € § : d(v) > §}. Since G is 2-connected, it is easy to check that
Theorem 1 holds if [T1| < 1 (which implies that G[S — T}] is a clique). Thus we may
assume the |Tj| > 2. In order to prove Theorem 1, we first show the following:

Lemma 1. Let P be a path cb_nnecting uw and v in G. If dp(u) + dp(v) > |P|, then
there exists a cycle C in G such that V(C) = V(P).

Proof. If uv € E, then Lemma 1 holds. If uv ¢ E(G), then there exist two
consecutive vertices z, y (y is the successor of z on P from u to v) such that z € N(v)
and y € N(u). Hence there exists a cycle C in G such that V(P) = V(C). O

Lemma 2. Let u,v in T} such that uwv ¢ E(G) and G’ be a graph by adding uv to
G. If there exists a cycle C' in G’ such that S C V(C"), then there exists a cycle C
in G such that § C V(C).

Proof. Let C' be the cycle in G' such that § C V(C'). Then wv € E(G'[C"]),
otherwise C' = C is the required cycle in G. Thus there exists a path P starting
from u and ending at v in G such that S C V(P). If Ng_p(u) N Ng_p(v) # 0,
then Lemma 2 holds. If Ng_p(u) N Ng_p(v) = @, then dp(u) + dp(v) > |P| as
{u,v} C T1. Hence Lemma 2 holds by Lemma 1. O

By Lemma 2, we may assume that G[Tj] is a clique of G. Let C be a cycle
containing 77 such that |V(C) N S| as large as possible. - If |V(C) N S| = g, then
Theoreom 1 holds. If |[V(C)NS| < g—1, let u € SNV(G—C). Since G is 2-connected,
there are two disjoint paths in G — C connecting « and two distinct vertices of C,
say wy and ws, respectively. As T3 C V(C), we have u € S — Tj. By the choice of
C, V(C(wr,wz)) NS # 0 and V(C(wz,w1)) NS # 0. Let 1 be the first vertex of
V(C(w1,w2))N S from wq to wy and z2 be the first vertex of V(C(wz,w;)) NS from
wy to wy. If @; ¢ Ty for some 1 < ¢ < 2, then uz; € E, which is impossible by the
choice of C. Thus z; € T} for all 1 < ¢ < 2. Since G[T}] is a clique, we can get a
cycle C' in G such that T3 C V(C") and |V(C') N S| > |V(C) N S|, contrary to the
choice of C'. Hence Theorem 1 is true.

3 Proof of Theorem 2

By Theorem 1, there exists a cycle in G' containing all the vertices of §. Choose
such a cycle C' with as few veriices as possible and give C an arbitary orientation.
Put R = G — C. Let 1,22, --,x4 be the vertices of V(C)N S, the order 1,2,---,¢
respecting the orientation of C, and consider the subscripts modulo ¢. Two S-
vertices z; and z;41 are said to be S-consecutive. We use Cj for a cycle of S-length
lin G.

In [4], it was proved:

Theorem 5. Let G be a graph of order n, S a subset of V(@) such that S is cyclable



in GG, and let C be a shortest cycle through all the vertices of S. If do(z) +dc(y) >
|C|+1 for some pair of S-consecutive vertices z and y in C, then G is S-pancyclable.

By using the same method as that used in the proof of Theorem 5 in [4], we can
get

Lemma 3. Let G be a graph of order n, S a subset of V(G) such that S is cyclable
in G, and let C be a shortest cycle through all the vertices of S. If there exist some
1 <4 < g such that #;_1z;41 € F and do(z;) > jg|2+_1, then G is S-pancyclable.

The following lemma is easy to check.

Lemma 4. Let P be a path connecting two vertices u; and u; of S and V(P)NS =
{w1,ug, -+ ,u} (the order 1,---,¢ respecting the orientation of P from wu; to uy). If
there exists some 1 < ¢ <t —p (p <t —3) such that there exists a path connecting
u; and u;4p+1 with the internal vertices, if any, in V(G) — (S U V(P)), then there
exists a path P’ connecting u; and u; in G such that |[V(P')N S| =t — p.

Now, let T = {v € S : d(v) > %1}. It is easy to see the following

Remark 1. If there is no any pair of S-consectitive vertices z,y in Clzg, z5] (2 # J)
such that {z,y} C T3, then G[V(C[z;, z;]) N (S — T»)] is a clique of G.

If there exists at most one pair of S-consecutive vertices which are both in T3,
then it is easy to check that G is S-pancyclable as G[S — T3], by Remark 1, is a
clique unless |S| = 4 and G[S] is a spanning subgraph of Fy. Thus Theorem 2 is
true. Hence we may assume that [T3| > 3 and there exist at least two pairs of S-
consecutive vertices which are all in T5. Without loss of generality, let {zq,z1} C T3
such that

|Nr(z1)NNg(zq)| = min{|Nr(z)NNg(y)| : z,y € T> and z,y are S-consecutive}.

If do(z1) + de(zg) = |C| + 1, then Theorem 2 holds. Thus in the rest of the
proof, we assume that dc(z1) + do(zg) < |C| and let My = Ng(z1) N Nr(zy). We
first show the following lemmas.

Lemma 5. If there is a path P = uy---ug+--up_1---up in G[V(C)] such that
[V(P)NS| =1+1>4, {u1,u2,up_1,up} € Tp and {u1,us}, {up—1,u,} are two pairs
of S-consecutive vertices on C, then there exists a C in G.

Proof. If Np(u1) N Nr(up—1) # 0 or Nr(uz) N Ngr(up) # 0, then Lemma 5 holds. If
Np(u1) N Nr(up—1) = 0 and Ng(uz) N Ng(up) = 0, noting that {uy,ug, up—1,up} C
T5, we have

dc(u1) + de(uz) + de(up-1) + de(up) 2 2(|C] + 1).

Thus either dc(u1) + de(uz) > |C| + 1 or de(up-1) + de(up) > |C| + 1. By
Theorem 5, G is S-pancyclable. Hence Lemma 5 holds. O
Lemma 6. Let P = u;---up, in G such that |V(P)NS| =1> 3. If {uj,u,} C T

and there is no any Cj in G, then we have
(1) (N (u1) NN (up) = V(P)) N (V(G) — 5)| = 0;



(ii) [N(u1) N N(up) N SN (V(G) — V(P))| > 2; and there exist a C4 and a Ciqq
which contains P as its subpath;

(iii) when P = Cl[z;, ;] for some j =1+i—1 (3 <1< g-1) and {z;,z;} C T,
then there exists a pair of S-consecutive vertices y and z in V(C(z},x;)) such that
y € N(x;) (or y € N(z;) and z € N(z;) (or z € N(=;)), and there exists a Cy2
which contains C|z;, z;] as its subpath.

Proof. Since there is no any C; in G, (i) is obvious and [N (u1) NV (P)| + |N(up) N
V(P)| < |V(P)| — 1 by Lemma 1. As d(u1) + d(up) > n+ 1, by (i), it is easy to
check that (ii) holds.

(iii) As d(z;)+d(z;) > n+1, by Lemma 1 and (i), we have [N (z;)NV (C(z;,2:))N
S|+ |N(z;) N V(C(zj,2:)) N S| > |[V(C(zj,@;)) N S|+ 2. Thus (iii) holds. O

Lemma 7. Let P = ujug---up be a path in G[V(C)] such that V(P)N S =
{vi,v2,+,v}, where v; = u;, vy = up and the order 1,2, respects the orienta-
tion of P from u; to up. Suppose that | > 5 and there is no any C; in G. If there
exist a Cryp, and a Crypmyr in G (m € {1,2}), both of which contain P as their
subpath and |V (Ci1p,) NS — V(C;+m+1) N Sl < 1, then {Ui,vi+m+2} N(S —Ts) # ]
forany 1<i:<l-—-m—2.
Proof. Let C' = Cjymy1 and C* = Cyy4y. Since P is a subgraph of both C'
and C*, we have C'[v;,vitms2] = C*[vi,Vitm+2] = P[vi,Vitm+2). Since there is
no any C; in G and i < | — m — 2, we obtain Ng(v;) N Nr(vitm+2) = 0 and
(N (v;) N V(C'(vit2, Virm+2))) U (N(vigm2) N V(C'(vi,vi42))) = 0, which implies
[(N(v3) U N(vigms2)) N V(C'(viy vizma2))| < [V(C' (s, vitm+2))|. Notice that P! =
C'[vitm+2,vs] is a path with |V (P")NS| = 1. By Lemma 1, der(v;) + der (Vigm2) <
C].

If {vi,vitm+2} C Th, then there exists at least two vertices, say = and y in
N () NN (i 1mi2) N(V(C)=V(C")). When z ¢ Sory ¢ S, then there is a C; which
contains (V(C'") -V (C'(vi, viym+2))) and z (or y), a contradiction. When {z,y} C S,
then |{z,y}NV(C*)| £ 1, as {z,y} C V(C)—V(C') and |V(C*)NS-V(C')NS| < 1.
Thus we can also get a C; in G, a contradiction. Hence {v;, Vitmy2} N (S —T2) # 0
and Lemma 7 holds. O

Lemma 8. If there exists some i > 1 such that {z;,z;y1} € Tp and do(z;) +
dc(zi1) < |C|, then

(i) |(Nr(z1) U Nr(zq)) N Nr(@i) N Ne(ziy1)| 2 1;

(ii) there exist a cycle C3 and a cycle Cj in G.

Proof. (i) Recall that M; = Ng(z1) N Ng(4). By the choice of z; and z;, we have
| M) < [NR(ﬂ:i) n NR(:E:,'+1)|. Thus

|R|+1 < |Ng(z1) UNg(zq)| +|Mi| < [Nr(z1) UNg(2q)| +|Nr(2:) \Nr(ziy1)| =
|(Nr(21)UNR(2q))U(Nr(z:) \Nr(2it1)) |+ (Nr(21)UNR(2e))NNR(2:)NNR(Ti11)] <
,Rl + ](NR(.'E1) U NR(mq)) n NR(%) n NR(mi-[-l)l-

;From the inequalities above, we can easily check that (i) holds.

(ii) Suppose that there is no any Cj in G for [ = 3 or | = 4. Since (Ng(z;) U



Ng(z¢))NNgr(z;)NNg(ziy1) # 0, without loss of generality, we may choose a vertex,
say v, in Ng(zq) N Ngr(z;) N Nr(zit1). Notice that {z,,z1,zi,zi41} C Th. Applying
Lemma 6(ii) to the path C[z;, z;11]vz, or the path Clz;, i41]vC[zg, z1], we can get
a C3 and a Cy in G, a contradiction. O

Lemma 9. If there is no any Cj in G for some integer | > 3, then [ = g — 1.

Proof. By contradiction, assume that 3 <1 < g — 2. Then by Theorem 5, for any
pair of S-consecutive vertices z and y in C, we have de(z) + deo(y) < |C).

Thus by the assumption and Lemma 5 , My # 0, dc(z1) + de(zq) < |C|, and
l{:E[_l,GEI} ﬂTg] <1.

Case 1. z; € Ts.

Then z; 1 ¢ Ty. If z;41 ¢ To, then =;_ 25,1 € F and there exists a C3 in G. By
Lemma 3, dg(z;) > Jﬂ;—l. Since Np(z;)NNg(z1) = 0 and dg(z1)+dr(zs) > |R|+1,
we have

2|R| + |Nr(zq) N Nr(z1)| = |[Nr(z1} U Ng(z1)| + |[Nr(ze) U Nr(@1)| + |Nr(zqg) N
Nr(z1)| > dr(z1) + dr(zq) + 2dr(z)) > 2|R| + 2,

which implies [Ng(zq) N Ng(z;)| > 2 and there exist a Cjy; and a Cj;2, both
of which contain C[xzg,#;_;] as their subpath and V(Ciy1) NS C V(Cliz). As
{z1,2;} C T, by Lemma 6(ii), we have I > 5 and by Lemma 7, we have {z3,24} C
S — T, which implies z3 € T,. When [ > 6, then x5 € S — Ty by Lemma 7 which
implies z3z5 € E and we can get a C; in G, a contradiction. When [ = 5, that
is, x5 € T3, since there is no any C5 in G, we obtain N(z3) N V(C(z3,z5)) = 0
and N(z5) NV (Clx2,24)) = 0. As d(z3) + d(z5) > n + 1, there exits some vertex,
say v in N(z2) N N(zs) — V(C[z2,z5)). Thus we can get a Cs which contains
either V(C[z2, z5])) U {v} whenever v ¢ S or V(C|[za,z5)) U {v} whenever v € S, a
contradiction. Hence we have z;11 € T5.

Since there is no any C; in G, we have Ngr(z;) N Ng(z;) = 0 and by Lemma 1,
dc(:{:;)+dc($1+1) < |C|. Thus we obtain that |NR($q)ﬂNR($1)ﬂNR($;+1)I > 1 and
! > 5 by Lemmaa 8. Hence there exist a Ciy1 and a Cj;2, which contain C[zg, %]
as their subpath.

Since [ > 5, by the assumption and Lemma 7, we obtain {z3,z4} C S — T». By
Lemma 5, z3 € S — T» which implies zoz4 € E. Thus we can get a C) in G, a
contradiction.

Case 2. z; ¢ Ty, 211 € Th.

By Lemmas 3 and 5, x;_5 € Ty (otherwise zyz_ € E, do(zi—1) > ]g;'—l, since
(Nr(z1) U NRr(2g)) N Ng(zi—1) = 0 by the assumption and [Ng(z1) U Ng(z,)| >
LI—{I;—I). Noting that Ng(z4) N Ng(z;—1) = 0, by Lemma 8, |Ng(z1) N Nr(z;—1) N
Nr(z;—2)| > 1 and | > 5. As {z4,2;1} C T, by Lemma 6(ii) and 6(iii), we have
! > 6 and there exist a Cjy; and a Cj; which contain C[zg,#;_1] as their subpath
and [V(Cp1)NS—V(Ci42)NS| < 1. Thus by Lemma 7, we can get {z3,z4} C S—T5
and {z9, 25} N (S —Ty) # 0. Thus we can get a C; in G, a contradiction.

Case 3. {331,321_1} NTy = @



Case 3.1. There is no any pair of S-consective vertices z and y in V(C[z141, T4—1])
such that {z,y} C T5.

Then G[V(C|z_1,24-1]) N (S — T3)] is a clique by Remark 1. Since | < q — 2,
V(Clzi-1,24-1]) N S| = 3.

If 241 ¢ Tb, then Zi-1Z¢-1 € E and zjxy_1 € E. Thus there exist a C3, and
two cycles Ciy1, Citpg in G[V(C)], which contain Clzy_1,2—1] as their subpath.
Thus | > 4 and {z;_3,2;-3} C T». By Lemma 7, we have {z3,z4} C S — T which
implies z; € Tp. When ! > 5, by Lemma 7, z5 € S — 7% implying z3z5 € E and
we can get a Cj in G, a contradiction. Thus [ = 4. Since there is no any Cj; in
G, we have zg23 ¢ E, N(zq) N V(C(z1,z3]) = 0 and N(z3) NV (C[zg-1,71)) = 0,
as {z3,z4} C N(mg—1). Thus by Lemma 1, |N(z,) N V(Clzg-1,z4])| + |[N(z2) N
V(Clzg-1,z4])| < |V(C[zg-1,4])|- Since d(zy) + d(z2) > n + 1, we obtain N(z2) N
N(zq) — V(Clz4,24-1]) # 0. Let w in N(z2) N N(zq) — V(C|z4,T4—1]) and we can
get a Cy in G, which contains V(C[zg, z3]) U {w} when w € § or V(Clzg_1,z4]) U
V(Clzg,z3]) U {w} when w ¢ S, a contradiction.

If 4, € T, then &,_5 € S —T) as there is no any pair of S-consecutive vertices
in V(Clzi41,2¢-1]) N T3, and @_124-2 € E, mwq—2 € L. Thus there exist a Cs
and a Cjy2 in G which contains C[z4_2, ;1] as its subpath. When z;_5 ¢ T3, then
T_2%q_2 € F and there exist a C4 and a Cjy; in G which contains C[z4_2,z;_2] as
its subpath. When z;_ € T3, since z4_1 € Ty, by Lemma 6(ii), there exist a Cy4
and Cpy1 in G which contains C|z4_1,2;-2] as its subpath. Thus in both subcases,
we have I > 5 and |V(Cj41) NS — V(Ci42) NS| < 1. Ey using Lemma 7, we can
get {z2,23,24} C S — T, and z2z4 € E which implies there exists a C; in G, a
contradiction.

Case 3.2. There exists a pair of S-consecutive vertices  and y in V(C[z41, zq-1])
such that {z,y} C T5. ,

Choose g —1 >t > I + 1 such that z; and z41; is a pair of S-consecutive vertices
and ¢ as small as possible. Then by Remark 1, we have G[V(C[z_1,z:)) N S] is
a clique of G which implies @; 121 € E. Let P = C[z1,2;_1]x;—1. By Lemma
8, |(Nr(x1) U Nr(zq)) N Ng(z:) N Nr(z41)] = 1 and [ > 5. We distinguish the
following two subcases.

Case 3.2.1. |(Ng(z1) N Nr(z:) N Nr(ze1)] > 1.

Then we can get a Cp; and a Cpy2 in G, both of which contain P as their
subpath. Notice that [ > 5. By Lemma 7, we have x4 € §—T, which implies 5 € T
by the assumption. Using Lemma 5 to the path P’ = C[zg,z;_1]C[zt-1, Tt+1], We
have z3 € § — T, as {xy,z¢41,2¢} € To. Thus by Lemma 7, z; C § — T and
z3r; € F, where j =5 when! > 6-or j =t — 1 when | = 5. Hence there is a Cj in
G, a contradiction.

Case 3.2.2. |(Ng(z1)N Ng(z:) N Np(ze41)| = 0.

By Lemma 8(i), we have |(Ng(zq) N Nr(z:) N Ng(4y1)| > 1. Then there exist
a Cj42 and a Cj,3 which satisfy the conditions of Lemma 7. Since [ > 5, we have
{#4,2;} € S—To (j = 5 when! > 5 and j = ¢t — 1 when ! = 5), which implies
xy € Ty. For the same reason as above, we have x3 ¢ T3 by Lemma 5 and z3z; € E.



Since {x3,2;} C Ty, applying Lemma 6(ii) to the path P* = C[za,2;_1]C[zs_1, z4],
we have N(z2) N N(z¢) N (V(G) — V(P*)) NS # 0. Notice that z3z; € E, we can
get a C in G, a contradiction. g

Now, we turn to prove Theorem 2. By Lemma 9, there exists a C} in G for
3 <1< q—2. If there exists some 1 < i < g such that #;_1z;11 € E or Ng(z;—_1) N
Ng(zit1) # 0, then there exists a Cy_; and Theorem 2 holds. Thus we may assume
that for any 1 <i <gq, z;_12;41 ¢ E and Ng(z;—1) N Ng(zi;1) = 0. Hence for any
1 <i<gq, we have {z;_1,z;11} NI # 0.

If there exists some 1 < ¢ < g such that {z;_1,2;11} C Tb, then do(zi_1) +
dc(ziy1) > |C|+ 1 which implies Ng(a:z-_ﬂ NN (z;41) NV (C[zit1, i-1]) # 0. Hence
we can get a Cy_; in G and Theorem 2 holds.

If for any 1 < i < q, {@i_1,zi41} NT2| = 1, since {zq, 21} C T3, we obtain that
q = 4r, {332,933} CS—-1y, {$4t,$4t+1} C T and {$4t+2, 3?4t+3} C S — T3 implying
that 24440443 € E for any 1 <t < r — 1 by the choice of C.

When there exist some m and ¢ with 0 < m <t < r — 1 such that (N(z4ps2) U
N(zam+3)) N {2at12, Tary3} # 0, then G[{Tsm+2, Tam+3, Tas42, Taz43}] is a clique. Let
P = C’[w4m+4,x4t+2]$4m+2m4t+30(m4¢+3,:1:4m+1]. Then IV(P) N Sl =g - 1. Since
{:L‘4m+1, :1','4m_|.4} C T5, we have either dp(934m+1)+dp (Eamid) = |P| ot NG—P($4m+1)ﬂ
NG_p(T4ms4) — {Tam+3} # 0. Thus we can get a Cy_; in G by Lemma 1 or Lemma
6(i).

When for any m and ¢t with 0 < m < t < r — 1, (N(zam+2) U N(zam43)) N
{Z4t42, T4143} = 0, then we can derive that G[S] is a spanning subgraph of Fy, and
Theorem 2 holds.

Therefore, the proof of Theorem 2 is complete.
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