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Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of G
is adjacent to some vertex in S (other than itself). The minimum cardinality of a total
dominating set of G is the total domination number of G, denoted by v(G). A graph is
claw-free if it does not contain K 3 as an induced subgraph. It is known (see J. Graph
Theory 35 (2000), 21-45) that if G is a connected graph of order n with minimum degree
at least two and G ¢ {Cs,C5, Cs, C1po}, then 1(G) < 4n/7. In this paper, we show that
this upper bound can be improved if G is restricted to be a claw-free graph. We show that
every connected claw-free graph G of order n and minimum degree at least two satisfies
7(G) < (n +2)/2 and we characterize those graphs for which 1(G) = |(n + 2)/2].
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Résumé

Un ensemble S de sommets d’un graphe G est un dominant total de G si tout sommet
de G est adjacent & un sommet de S (différent de lui-méme). Le cardinal minimum d’un
dominant total est noté ,(G). Nous montrons que tout graphe connexe d’ordre n, de degré
minimum § > 2 et sans K3 induit vérifie 1(G) < (n + 2)/2 et nous caractérisons les
graphes pour lesquels 1:(G) = |(n + 2)/2].
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1 Introduction

Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2] and is
now well studied in graph theory (see, for example, [1, 3, 6]). The literature on this subject
has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [4, 5].

A total dominating set of a graph G with no isolated vertex is a set S of vertices of
G such that every vertex is adjacent to a vertex in S (other than itself). Every graph
without isolated vertices has a total dominating set, since § = V(G) is such a set. The
total domination number of G, denoted by (@), is the minimum cardinality of a total
dominating set. A total dominating set of G of cardinality v,(G) we call a v(G)-set.

For notation and graph theory terminology we in general follow [4]. Specifically, let
G = (V, E) be a graph with vertex set V of order n and edge set E, and let v be a vertex
in V. The open neighborhood of v is N(v) = {u € V' |uv € E} and the closed neighborhood
of vis N[v] = {v} UN(v). For a set § C V, the subgraph induced by S is denoted by G[S].
A clique in G is a complete subgraph in G.

A cycle on n vertices is denoted by C,. The minimum degree among the vertices of G
is denoted by 6(G). We shall denote the set of all vertices in G of degree 2 by S3(G), or
simply by Sy if the graph G is clear from context.

For k > 1 an integer, the k-corona of a graph H is the graph of order (k + 1)|V(H)|
obtained from H by attaching a path of length & to each vertex of H so that the resulting
paths are vertex disjoint.

A graph is claw-free if it does not contain Kj 3 as an induced subgraph. An excellent
survey of claw-free graphs has been written by Flandrin, Faudree, and Ryjacek [7).

In this paper we show that every connected claw-free graph G of order n and 6(G) > 2
satisfies 1(G) < (n+ 2)/2 with equality if and only if G is a cycle of length congruent to 2
modulo 4. A characterization of the connected claw-free graphs G of order n and §(G) > 2

satisfying v:(G) = (n + 1)/2 is obtained.

2 Total Domination in Graphs
The total domination number of a cycle is easy to compute.

Proposition 1 ([6]) For n > 3, 14(Cy,) = n/2 if n = 0(mod4) and y(Cyp) = [(n+1)/2]
otherwise.

The decision problem to determine the total domination number of a graph is known to
be NP-complete. Hence it is of interest to determine upper bounds on the total domination
number of a graph. Cockayne et al. [2] obtained the following upper bound on the total
domination number of a connected graph in terms of the order of the graph.



Theorem 2 ([2]) If G is a connected graph of order n > 3, then y(G) < 2n/3.

Brigham, Carrington, and Vitray [1] obtained the following characterization of connected
graphs of order at least 3 with total domination number exactly two-thirds their order.

Theorem 3 ([1]) Let G be a connected graph of order n > 3. Then v(G) = 2n/3 if and
only if G is Cz, Cg or the 2-corona of some connected graph.

If we restrict the minimum degree to be at least two, then the upper bound in Theorem 2
can be improved.

Theorem 4 ([6]) If G is a connected graph of order n with §(G) > 2 and G ¢ {C3,Cs, Cs,
Cio}, then n(G) < 4n/7.

Favaron, Henning, Mynhardt, and Puech [3] showed that if G is a connected graph
of order n with 6(G) > 3, then 4;(G) < 7n/13 and conjectured that this upper bound
can be improved to n/2 and showed infinite families of connected cubic graphs with total
domination number half their order. This conjecture was recently proven by Lam and
Wei [8] who defined an M-graph to be a graph G with §(G) > 2 satisfying the condition
that if Sy # 0, then the length of a longest path in G[S3) is at most one. The following
beautiful result is proven in [8].

Theorem 5 ([8]) If G is an M-graph, then v(G) < n/2.

Since any graph with minimum degree at least three is an M-graph, Theorem 5 immedi-
ately implies the conjecture due to Favaron et al. [3] that every graph with minimum degree
at least three has total domination number at most half its order.

3 The Family G*

In this section, we construct an infinite family G* of connected, claw-free graphs G of order n
satisfying v(G) = (n + 1)/2.

Let Gq,Gs,...,Gr be the six graphs shown in Figure 1, and let G = {G1,G3,...,G7}.

The following result is straightforward to verify.

Observation 6 Let G € G have order n. Then G is a connected claw-free graph with
§(GQ) = 2 satisfying 7(G) = (n + 1)/2. Furthermore, every vertex v of G, except for a
neighbor of the vertex of degree 4 in G5 and a neighbor of one of the two vertices of degree 3
in Gg or Gy that are incident with a bridge, belongs to a dominating set D of G such that
|D| = (n —1)/2 and v is the only isolated vertez in G[D).
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Figure 1: The family G = {G1,G>,...,G7}.

We define an elementary 4-subdivision of a nonempty graph G as a graph obtained from
G by subdividing some edge four times. A 4-subdivision of G is a graph obtained from G
by a succession of elementary 4-subdivisions (including the possibility of none).

We shall need the following lemma from [6].

Lemma 7 ([6]) Let G be a connected nontrivial graph and let G' be obtained from G by an
elementary 4-subdivision. Then y(G') = v(G) + 2.

We define a good edge of a graph G to be an edge uv in G such that both N[u] and N[v]
induce a clique in G —wv. Further, we define a good 4-subdivision of G to be a 4-subdivision
of G obtained by a sequence of elementary 4-subdivisions of good edges (at each stage in
the resulting graph). The following observation is immediate.

Observation 8 Let G be a claw-free graph and let G' be obtained from G by an elementary
4-subdivision of an edge e of G. Then G' is claw-free if and only if e is a good edge of G.

For ¢ = 1,2,...,7, let G = {G | G is a good 4-subdivision of G;}. We now define our
family G* by

7
g =g
i=1
It follows from Observation 8 and by the way in which the family G* is constructed, that

each graph G' € G* is claw-free. The following result now follows readily from Observation 6
and the proof of Lemma 7 presented in [6].



Observation 9 Let G € G* have order n. Then G is a connected claw-free graph with
0(G) = 2 satisfying v(G) = (n + 1)/2. PFurthermore, every vertex v of G, except for a
neighbor of the vertez of degree 4 in Gf and a neighbor of one of the two vertices of degree 3
in Gg or G} that are incident with a bridge, belongs to a dominating set D of G such that
|D| = (n—1)/2 and v is the only isolated vertez in G[D].

4 Main Result

If we restrict G' to be a connected claw-free graph, then the upper bound of Theorem 2
cannot be improved since the 2-corona of a complete graph is claw-free and has total dom-
ination number two-thirds its order. Furthermore, with this restriction on G, the upper
bound of Theorem 5 cannot be improved since the graph obtained from m > 2 disjoint
copies of K4 — e by selecting one vertex of degree 2 in each copy and forming a clique on the
resulting set of m selected vertices is a connected, claw-free M-graph with total domination
number one-half its order.

Our aim in this paper is twofold: First to show that the upper bound of Theorem 4 can
be improved if we restrict G to be a claw-free graph, and, secondly, to characterize the
extremal graphs achieving the new upper bound.

We will refer to a graph G as a reduced graph if G has no induced path on six vertices,
the internal vertices of which have degree 2 in G.

We shall prove:

Theorem 10 If G is a connected reduced claw-free graph of order n with §(G) > 2, then
1(G) < n/2 unless G € {C5,C5,Cs} UG.

As an immediate consequence of Lemma 7, Observation 8 and Theorem 10 we have the
following result.

Corollary 11 If G is a connected claw-free graph of order n with 6(G) > 2, then either
(i) %(G) < n/2, or
(ii) G 1s an odd cycle or G € G*, in which case 7(G) = (n+1)/2, or
(iii) G = C,, where n = 2 (mod 4), in which case 1,(G) = (n+ 2)/2.

5 Proof of Theorem 10

We proceed by induction on the order n > 3 of a connected reduced claw-free graph G with
§dG) > 2 Ifn=23 then G =Csand 1(G) =2=(n+1)/2. If n =4, then Cyis a
subgraph of G, and so 1,(G) = 2 = n/2. If n = 5, then, by Theorem 4, either G = Cj, in
which case v,(G) =3 = (n+1)/2, or %(G) =2 = (n—1)/2. If n = 6, then, by Theorem 4,



either G = Cg, in which case 1(G) = 4 = (n + 2)/2, or 7(G) < 3 = n/2. This establishes
the base cases.

Suppose then that the result is true for every connected reduced claw-free graph of order
less than n, where n > 7. Let G be a connected reduced claw-free graph of order n with
§(G) > 2. If G is a cycle, then the desired result follows from Proposition 1. Hence we
may assume that G[S] is a disjoint union of paths. If G is an M-graph, then v,(G) < n/2
by Theorem 5. Hence we may assume that G[S2] contains a path of length at least two.
Among all paths in G, every internal vertex of which belongs to Ss, let zg,z1,...,2; be
chosen so that

(i) k is as large as possible, and subject to (i),
(ii) zozy ¢ E(G) if possible.

Hence, degg zo > 3 and degq o > 3 while degg z; = 2 for i € {1,...,k—1}. Since G[Ss]
contains a path of length at least two, & > 4. On the other hand, since G is a reduced

graph, k < 5.

Let R = N(zo) — {z1} and let T = N(z}) — {@x_1}. Since G is claw-free, z¢ # z} and
each of R and T induces a clique.

Claim 1 Ifk =5, then v(G) <n/2 or G = G.

Proof. Since G is a reduced graph, zozs € E(G). Since G is claw-free, the cliques G[R]
and G[T) are the same, i.e., R =T. Let G' = G — {z1,z2,®3,z4}. Then G' is a connected
claw-free graph of order n' = n—4 with §(G") > 2. Since each of zy and z5 lies in a triangle
in G', G’ is not a cycle unless G' = K3 in which case G = G;. Hence we may assume
that G is not a cycle. Further, since G' has at least two vertices, namely zy and x5, whose
closed neighborhoods induce a clique, G ¢ G*. Let D’ be a v,(G')-set. By the inductive
hypothesis, |D'| < n'/2 = (n —4)/2. The set D' U {z2,z3} is a total dominating set of G,
and so 7(GQ) < |D'|+2<n/2.0

Claim 2 If k =4 and xoz4 ¢ E(Q), then v(G) < n/2 or G = {Gq,G3,G4,Gr}.

Proof. Let G' = G — {z1,22,23,24}. Then G’ is a claw-free graph of order n' = n — 4.
Since zg lies in a triangle in G', G' is not a cycle unless G’ = K3 in which case G = Ga.
Hence we may assume that G' is not a cycle.

Suppose G' € G*. Since N|zg] induces a clique in G', it follows that G' = G} and that
zg is the vertex of degree 2 in the triangle in G’. Since G'[T] a clique and zgz4 ¢ E(G),
|T’| = 2 and the two vertices of T' are adjacent. Hence, since G is a reduced claw-free graph,
it follows that either G = G3 (if G’ = G; and T consists of a neighbor of zy in G' and
a vertex at distance 2 from xp in G') or G = G4 (if G’ is an elementary 4-subdivision of
one good edge of G; and T consists of the two vertices at distance 5 from zy in G') or
7(G) < (n — 1)/2. Hence we may assume that G' ¢ G*.



Suppose G' is connected and §(G’) > 2. Let D' be a v(G')-set. By the inductive
hypothesis, |[D'| < n’/2 = (n —4)/2. The set D' U {x3,z3} is a total dominating set of G,
and so 1;(G) < |D'| +2 < n/2. Hence we may assume that G’ is disconnected or §(G") = 1.
Note that if §(G') = 1, then |T'| = 2 and the two vertices of T are the only possible vertices
of degree 1 in G’, while if G’ is disconnected, then since each of R and 7' induces a clique,

RNT = 0.

Let F' be obtained from G’ by adding all edges between zj and vertices in 7' that are not
adjacent to zg. Then F' is a connected claw-free graph of order n' = n — 4 with §(F) > 2.
Since degp zg > 4, F is not a cycle.

Suppose F' € G*. Since the subgraph induced by N(zg) in F' consists of two (disjoint)
cliques each of order at least 2, it follows that F' € {G3,G5} and that zg is the vertex
of maximum degree 4 in F. If F = G3, then G’ is a connected graph with 6(G') = 2, a
contradiction. Hence F' = G5, and therefore G = G7. Thus we may assume that F' ¢ G*.

Let S be a v;(F)-set. By the inductive hypothesis, |S| < n'/2 = (n —4)/2. If SN (T'U
{zo}) = 0, then let D = SU {zq,z3}. Iff &g € S and SNT # 0, then let D = SU {1, z4}.
Ifzg € Sand SNT = 0, then let D = SU {z3,24}. If 29 ¢ S and SNT # 0, then let
D = SU{z1,z2}. In all cases, D is a total dominating set of G, and so 1(G) < |D| =
S| +2<n/2.0

By Claims 1 and 2, we may assume that k¥ = 4 and z¢z4 € F(G). Since G is claw-free,
the cliques G[R] and G[T] are the same (and degg zo = degg ©4).

Claim 3 If degg zo > 4, then 7(G) < n/2.

Proof. Let G' = G —{z1, 2, 23,24} Then, G’ is a connected, claw-free graph of order n' =
n — 4 with §(G') > 2. If G’ is a cycle, then since g lies in a triangle in G’, G' = K3 and
so 7(G) = 3 = (n — 1)/2. Hence we may assume that G’ is not a cycle. Suppose G' € G*.
Since N[zo] induces a clique in @', and since R = T, it follows that G' = G and that
zo is the vertex of degree 2 in the triangle in G'. But then 1(G) = 5 = (n — 1)/2.
Hence we may assume that G’ ¢ G*. Let D’ be a v;(G')-set. By the inductive hypothesis,
|D'| < n'/2 = (n —4)/2. Then, D' U {z3,23} is a total dominating set of G, and so
v (G) < |D'|+2<n/2.0

By Claim 3, we may assume that R = T = {y}. If deggy = 2, then n = 6 and
7(G) = 3 = n/2. Hence we may assume deggy > 3. Let ¥ = N(y) — {o,2z4}. Since G is
claw-free, Y induces a clique. Let X = {zg, ®1,Z2,Z3,T4}.

Claim 4 If every vertez of Y has degree at least 3 in G (in particular, if deggy > 5), then
7(G) < n/2 or G = Gs.

Proof. Let G’ = G — (X U{y}). Then G’ is a connected, claw-free graph of order n' = n—6
with §(G") > 2.



Suppose G’ is a cycle. Then, since G[Y] is a clique, |Y| € {1,2,3}. By our choice of k,
G’ has length at most 5. If G' = Cj, then v(G) = 4 = (n — 1)/2 (irrespective of whether
Y[ =1or |Y| =2o0r |V| =3). If & = Cy, then since G is claw-free, |Y| = 2 and
1(G) =5 =n/2. If G’ = Cs, then G € G5. Hence we may assume that G' is not a cycle.

Suppose G' € G*. Let v € Y. Since G'[Y] is a clique, and since G is claw-free, it follows
that we can choose v so that it is neither a neighbor of the vertex of degree 4 in G§ nor
a neighbor of a vertex of degree 3 in G§ or G% that is incident to a bridge. Hence by
Observation 9, there exists a dominating set D of G’ such that v € D, |D| = (n' — 1)/2 =
(n—7)/2 and v is the only isolated vertex in G'[D]. Thus, DU{zq,23,y} is a total dominating
set of G, and so v4(G) < |D| + 3 = (n — 1)/2. Hence we may assume that G’ ¢ G*.

Let D' be a v(G')-set. By the inductive hypothesis, |D'| < n'/2 = (n — 6)/2. The set
D'"U {zg, 21,24} is a total dominating set of G, and so v(G) < |D'| +3 <n/2. O

By Claim 4, we may assume that deggy = 3 or 4 and at least one neighbor z of y
has degree 2. Let N(z) — {y} = {t} (the edge ty may or may not exist). If n = 8, then
ty € E(G) and {zg,z1,z4,y} is a total dominating set of G, and so 1(G) < 4 =n/2. So
we may suppose n > 9.

Claim 5 If all the vertices of N(t) — {y,z} have degree at least 3 in G, then v(G) < n/2
or G = Gg.

Proof. Let G' = G — (X U{t,y,2}). Then G’ is a connected, claw-free graph of order n’ =
n — 8 with 6(G") > 2.

Suppose G’ is a cycle. Since G is claw-free, no neighbor of 3 belongs to G'. Further, ¢
has exactly two neighbors on the cycle and these two neighbors are adjacent. Hence, by our
choice of k, G' has length at most 5. If G' = Cs, then 1(G) =5 = (n — 1)/2. If G' = Cy,
then 7,(G) = 6 = n/2. If G' = C; and ty € E(G), then 14(G) =6 =(n—1)/2. f G' = C}
and ty ¢ F(G), then G = Gg. Hence we may assume that G’ is not a cycle.

Suppose G' € G*. Let v € N(t) N V(G'). Since N(t) N V(G') is a clique, and since G
is claw-free, it follows that we can choose v so that it is neither a neighbor of the vertex
of degree 4 in Gf nor a neighbor of a vertex of degree 3 in G§ or G7 that is incident
to a bridge. Hence by Observation 9, there exists a dominating set D of G' such that
v € D, |[D| = (n' —1)/2 = (n — 9)/2 and v is the only isolated vertex in G'[D]. Thus,
DU{zg,x1,24,t} is a total dominating set of G, and so 1(G) < |D|+4 = (n—1)/2. Hence
we may assume that G’ ¢ G*.

Let D' be a v;(G')-set. By the inductive hypothesis, [D'| < n//2 = (n — 8)/2. The set
D' U {z1,22,y,2} is a total dominating set of G (irrespective of whether the edge ty is
present or not). Hence, 7(G) < |D'| +4 <n/2. 0

By Claim 5, we may assume that N(t) — {y, 2z} contains a vertex u of degree 2 in G. Let
N(u) — {t} = {w} (the edge tw may or may not exist). By the claw-freeness of G, the only
neighbors of ¢t are w and z and possibly y and w.



Claim 6 If ty € E(G), then v(G) < n/2.

Proof. Let G' = (G—{t,2})+uy. Then G is a connected, claw-free graph of order n' = n—2
and G' is not a cycle.

Suppose G' € G*. Then G' = G¢ where u is the vertex of G' incident with two bridges
(note that the case that G' is obtained from Gg an elementary 4-subdivision of a bridge of
G where u is a vertex of degree 2 in G’ incident with a bridge and adjacent to a vertex of
degree 3 cannot occur by our choice of k). But then y(G) =7 = (n — 1)/2. Hence we may
assume that G' ¢ G*.

If §(G') = 1, then N(w) = {u,t}, and so n = 10 and 1(G) < [{z1,22,t,y}| = 4 =
(n — 2)/2. Hence we may assume §(G') > 2. Let D' be a v,(G')-set. By the inductive
hypothesis, |[D'| < n//2 = (n—2)/2. If {u,y}ND' # 0, let D = D' U{t}. If {u,y} N D' =0,
let D = D'U {y} (note that in order to dominate y, at least one of g and 4 is in D'). In
any case, D is a total dominating set of G, and so (@) < |[D| = |D'|+1<n/2.0

By Claim 6, we may assume that ty ¢ F(G). Therefore, since yw ¢ E(G), tw must be
an edge of G by condition (ii) in the choice of the path zg,zj,..., 2.

If degyw = 2, then n = 10 and y(G) < [{z1,22,%,y,2}| = 5 = n/2. Hence we may
assume degew > 3. Let W = N(w) — {u,t}. Since G is claw-free, G[W] is a clique.

Let G' be obtained from G — {t,u,w,z} by adding all edges between y and vertices in
W. Then G’ is a connected, claw-free graph of order n’ = n — 4 with §(G') > 2 and G’ is
not a cycle.

Suppose G' € G*. Then either G = G5 or G = Gg or G = G7. If G = G (resp., G = G
or G = G7), then the set {t,w,z, 1,24} can be extended to a total dominating set of G
by adding two (resp., three or four) additional vertices, and so ;(G) < (n — 1)/2. Hence
we may assume that G’ ¢ G*.

Let D' be a v;(G")-set. By the inductive hypothesis, |D'| <n//2 = (n—4)/2. Ify ¢ D',
let D = D'U{t,z}. fye D and DNW # 0, let D = D'U{w,2}. Ify € D' and
D'nW =0, let D=D'"U{t,w}. In any case, D is a total dominating set of (, and so
1(G) < |D| = |D'| +2 < n/2, as desired. This completes the proof of the theorem. O.
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