WHY : A MULTI-LANGUAGE MULTI-PROVER
VERIFICATION TOOL

FILLIATREJ C

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

09/2003

Rapport de Recherche N° 1366

CNRS - Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Batiment 650
91405 ORSAY Cedex (France)

Why: a multi-language multi-prover
verification tool

Jean-Christophe Filliatre
LRI - CNRS UMR 8623
Université Paris-Sud, France
filliatrOlri . fF

August 28, 2003

Abstract

This article introduces the verification tool Why. This tool produces verification
conditions from annotated programs given as input. It differs from other systems in
that it accepts several languages as input (currently C and ML, and JAVA with the
help of the companion tool Krakatoa) and outputs conditions for several existing provers
(currently Coq, PVS, HOL Light and haRVey). It also provides a great safety through
some de Bruijn criterion: once the obligations are established, a proof that the program
satisfies its specification is built and type-checked automatically.

Keywords: Verification, C, ML, Java

Résumé

Cet article présente I'outil de vérification Why. Cet outil produit des obligations de
preuve & partir de programmes annotés. Il differe d’autres systémes d’une part parce
qu’il accepte plusieurs langages en entrée (actuellement C et ML, et JAVA avec I'aide de
I'outil compagnon Krakatoa), et d’autre part parce qu’il produit des obligations pour
plusieurs systemes de preuve existants (actuellement Coq, PVS, HOL Light et haRVey).
C’est également un systéme offrant une grande garantie de sécurité, en satisfaisant au
critere de de Bruijn: une fois les obligations produites, une preuve que le programme
satisfait sa spécification est construite et vérifiée automatiquement.

Mots clés : Vérification, C, ML, Java

1 Introduction

This article introduces the verification tool Why [4]. When observed from outside, this
tool resembles many others: it takes annotated programs as input and produces verification
conditions as output. However, it relies on a technology and on some design choices which
are less common.

First, Why is not coming with its own proof tool; instead, it produces conditions for
existing proof tools. This is particularly important when interactive proof is needed, which
always ends up to be the case. Writing a good proof assistant is a tremendous amount of
work, which should be left to the field experts. Currently, Why is interfaced with three proof
assistants, namely Coq [1], PVS [3] and HOL Light [10]. The same remark actually applies
as well to automatic decision procedures: instead of involving them inside the verification
tool, it is simpler to use existing tools as a back-end. Currently, Why is interfaced with the
haRVey decision procedure [18]. Adding a back-end for a new proof tool is really simple—a
matter of a few hours—and the requirements over the logic are very small—only a first order

minimal logic is needed.
ML\ /C

l the WHY tool]

T

proof obligations Coq PVS HOL Light haRVey

annotated programs

Figure 1: The Why tool

If interfacing to external proof tools may increase the trust in the verification process,
1t is also important to bring evidence that the verification tool itself is trustworthy. This is
particularly important when the tool is discharging some obligations by itself or is involving
complex treatments for some particular constructs of the language (C abrupt terminations,
JAVA or ML exceptions, etc.) One solution is to embed the whole verification process inside
a proof assistant. Why adopts a slightly different approaches where a proof that the program
satisfies its specification is checked a posteriori, once all obligations are discharged, either
by the user or automatically by Why itself. This check is purely automatic and thus can be
considered as a de Bruijn criterion.

Finally, Why is not limited to one input language. It currently accepts C and ML pro-
grams, and JAVA programs with the help of the companion tool Krakatoa. The reason for
this flexibility is the choice of ML as internal language'. Richer than the traditional impera-
tive constructs, ML constructs ease symbolic manipulations—not distinguishing expressions
and statements, allowing local variables at any place, etc.—and are used to interpret some
complex C and JAVA constructs. For instance, abrupt terminations with return, break or
continue are nicely interpreted using ML exceptions. Doing so, there is no need to im-
plement special rules for these constructs; the rules for exceptions are giving the excepted
verification conditions. Another benefit in using ML is a natural modularity of the method,
using a simple extension of ML types with effects and specifications. Again, there is no need
to implement a complex rule for function call; there is nothing more to do than ML typing.

This paper is organized as follows. Section 2 exposes the principles and theoretical

By ML we mean a functional programming language with side effects, like Caml or SML, and not a purely
functional language like Haskell.

foundations of the tool. Then Section 3 details its practical use, illustrated on an example.
Section 4 is briefly introducing the verification of JAVA programs using the companion tool
Krakatoa. Finally, some expected future developments are described.

2 Principles

The theoretical foundations of Why are detailed in the author’s PhD thesis [7, 9]. Basically,
Why is building a functional interpretation of the imperative program given as input. Ex-
pressed in Type Theory, this interpretation mixes the computational and logical parts of
the program, using dependent tuples. The computational part is entirely built by the tool,
using an effect inference and a notion of monads parameterized with effects. The logical
part is usually incomplete, the missing pieces being precisely the proof obligations. These
verification conditions are simply collected by traversing the functional interpretation.
For instance, the following Hoare triple

{z>0Ay>1}z =z+1, 9y = yxz{y>%} (1)
is translated into a proof of
VZo,y0- zo >0 A yo > 1= 3z, 1. 11 > %o

The computational part of this proof consists in interpreting the two assignments z := z+1
and y := y x z, as the computation of final values z; and y; from initial values zy and ;.
The logical part consists in an hypothesis zp > 0 A yo > 1 and a proof of y; > yo. The
latter is a verification condition. The entire proof looks like

AZo,Yo. Ah x>0 A yp> 1.
let z; = x5+ 1 in
let ¥, = yo X x1 In
(1,5, 0: 91 > o)

where the proof obligation is denoted by a box. The exact statement of this obligation is

thus
o >0 A 'y0>1:>$1:$0+1:2;>y1:y0><$1:>y1>y0

and simplifies, after substitution, to
o >0 A yo>1=yx (xo+1) >y

As illustrated by this example, the verification conditions for the usual imperative con-
structs are similar to the ones given by Hoare logic. This was clearly demonstrated by
verifying with Why the program Find, proved correct by Hoare himself thirty years ago [12].
The verifications conditions appeared to be ezactly the same, and the proofs were conducted
in Coq following Hoare’s paper in a straightforward way [8]. But it is important to notice
that Why is not implementing some Hoare logic, even if it seems to do so observationally.

The remaining of this section describes the Why technology in more details. The Why
concrete syntax is used throughout this section.

2.1 Types, programs and annotations

Annotations are written in first-order logic. Terms (¢) are made of constants, variables and
application of function symbols to terms:

t u= constant | z | z@L | f(¢,...,t)

When relevant, a variable z can be annotated with a label L, written 2@/, to denote the value
of a mutable x at a given program point L. It is important to notice that f is a function
symbol from the logical world, which cannot be defined or used in programs. Predicates (p)
are built with the usual constructs of first-order logic:

poa= | wle il [trﬁe|false|notp|pandp[porp|
if ¢ then p else p | forallz:f. p| exists z: 8. p

In the conditional construct if ¢ then p; else po, ¢ is a boolean term, not a proposition;
indeed, propositions are not necessary booleans (we do not assume classical logic a priori).
For the same reason, true and false are not the two boolean constants (also writtern true
and false with no possible ambiguity), but the two propositions always and never valid.
Quantification is limited to primitive types.

Primitive types (/) contain a type unit with a single value void, the boolean type bool,
-a type int for integers, a type float for floating point numbers:

B = unit | bool | int | float | z

A type variable z stands for an abstract type introduced by the user; it is supposed to be
defined on the logical side and thus is pure (i.e. does not contain mutable parts).

Types for programs distinguish types for values (r) and types for computations (k).
The former include primitive types, references, arrays and function types. The latter add a
precondition, an effect and a postcondition to a value type. An effect (€) is made of three
lists of variables: the mutables possibly accessed and those possibly updated.

T u= fB|Pref|farray|z:T >k
k- u= {p}re{p}
€ = readsux,...,zvwritesz,...,x

Programs are built from usual constructs of ML with references and arrays, with no
distinction between expressions and statements:

e u= {pte{p}|
t|'z|z:=e|refe|xlel |zle]l :=e|e;e| L:e|
if etheneelsee|letz=eine| fun (z:7) ->e| (ee) |
rec z : 7 {variant t} = e |
while e do {invariant p variant t} e done

Any expression can be given pre- and postcondition using the Hoare triple notation {p; } e {p,}.
In the postcondition, the variable result is bound to the result of the computation and an

4

empty label refers to the precondition point (i.e. 2@ stands in p, for the value of z before the
evaluation of e). The construct L:e explicitly places a label L right before the evaluation
of e, to be used in annotations inside e. Recursive functions and loops are given a variant:
it is a term ¢ which must decrease for a given well-founded order relation. This relation can
be specified explicitly; to simplify this presentation we assume here the usual order relation
on natural numbers. Loops can be given invariants (this is for convenience, since the Hoare
triple already allows to annotate the loops, both inside and outside).

Typing rules closely follow those of traditional ML typing, with additional inference of
effects and check for well-formedness of pre- and postconditions. All these rules are given
in [9].

2.2 Aliasing exclusion

The reader may have already noticed severe restrictions with respect to ML. First, references
and arrays are limited to primitive types. Second, left values are limited to variables (in
accessing or updating references or arrays). The goal behind these restrictions is to be
able to get a precise effect analysis (i.e. to know for each variable separately if it is possibly
accessed or modified). This leads to a very precise interpretation in Type Theory and thus to
very natural proof obligations, as illustrated at the beginning of this section. Consequently,
aliasing between different mutable variables must be excluded and this is guaranteed by
typing rules. Mainly, rules for let in and function application prevent the user from creating
an alias; see [9] for details.

However, we show in Section 4 that it is still possible to cover all features of ML, C or
JAVA programs, using a low level memory model.

2.3 Weakest preconditions

To get the expected obligations, the input program must be adequately annotated: inter-
mediate program points must be given the right annotations. Why discharges the user from
this painful task using a weakest precondition (WP) calculus. The weakest precondition of
a program e for a postcondition ¢ is written wp(e, g).
The originality of this WP calculus is its treatment of annotated subexpressions i.e. of
Hoare triples:
wp({p'}e{d'},q) = P A Vresult. Vw. ¢ = ¢

where w stands for the set of variables possibly modified by e. This formulation expresses
a crucial notion of modularity: as seen from outside, the Hoare triple {p'} e {¢'} is a black
box with a specification given by p/, ¢’ and its effect, and its code e is not examined to
compute the weakest precondition for ¢q. Instead, a new WP calculus starts inside e with the
postcondition ¢'.

In particular, a loop and a function call are naturally annotated with the loop invariant
and the function specification, respectively. Thus they are seen as Hoare triples by the WP
calculus and do not need any special treatment.

The weakest precondition is defined for the other constructs in a usual way:

wp(t,q) = q[result < i]
wp(!a:, q) = qlresult « z
wp(z :=e,q) = wple,qresult < void;z ¢ result])
wp(t[e] q) = wp(e, q[result + (access t result)])
wp(tle] := ey, q) = wp(er, wp(ez,)[v1 « result])
with ¢, = g[result <+ void;t + (update t v, result)]
) = wp(er, wp(es, q))
wp(L:e,q) = wple,q)[zeL + x|
) = wp(ey, if result then wp(eq,q) else wp(es,q))
) = wp(er, wp(ez, q)[z « result])

where access and update are the purely functional operations over the arrays as modeled on

the logical side.

2.4 Exceptions

Why also supports exceptions. For the clarity of this presentation we assume a single excep-
tion £ with one argument of type int; but Why supports an unlimited number of exceptions
declared by the user.

First, the notion of effect is extended to indicate the possible raise of exception E:

€ = reads z,...,z writes z,...,z [raises E|

Postconditions are also extended to include a second predicate, namely the property to be
valid when exception F is raised:

= {p}re{p| E=p}

Finally, the Hoare triple is extended similarly and constructs to raise and catch exception £
are added:

= {ple{p| E=p}| ... | raise (Fe)|tryewith E z -> ¢ end

The notion of weakest precondition is extended accordingly. It becomes a ternary oper-
ator wp(e, q,r) where ¢ is the normal postcondition and r the exceptional one. All rules of
the WP calculus but one are unchanged i.e. 7 is just added as a third argument everywhere.
Only the rule for the Hoare triple must be adapted, as follows:

wp({p'}e{d | E=r'},qr) = p' A Vresult. Vw. (¢ =g A 7 = 7)
Two new rules are added to handle the raise and try constructs:

wp(raise (F e),q,r) = wp(e,r, 1)
wp(try e; with Bz -> ey end, q,7) = wp(er,q, wp(ex, q,7)[z ¢+ result))

2.5 Discharging conditions automatically

Why is discharging a lot of proof obligations by itself. As already mentioned, safety is ensured
since Why builds corresponding proof objects (proof terms for the Coq logic). In particular,
it is very important to discharge tautologies coming from the WP calculus. By construction,
such tautologies lie in linear first-order minimal logic, which correspond to the following rules

I,P,QFR I,P,QFR
PP T,PP=QFR TI,PAQ+R T,Vz.P(z)+ P(})

P You Ple) =-8za)F R L. Y%2.(P(g) n@(a)) - R
[, P(t),Vy.Qy) F R L Ve Py, Ye.Q(2) - R

where z and y (resp. t) may stand for several variables (resp. several terms). Why is
implementing a goal directed proof search using these rules, which returns a proof object.

2.6 Verifying C programs

Externally, Why accepts both ML and C programs as input. C programs are written in the
standard ANSI C syntax and annotated using a particular kind of C comments. Internally
to the Why tool, the sole constructs are the ML ones and C code is translated into ML code.
Objects set apart, a similar translation is done for JAVA programs in the Krakatoa tool (see
Section 4). We give here an overview of the C to ML translation.

Types. Currently, only C base types (void, char, short, int, long, float and double),
arrays and pointers are considered. Following the same restrictions as ML (see Section 2.2),
arrays and pointers are limited to base types. Type void is mapped to ML type unit; all
integer types are mapped to ML type int; both floating point types are mapped to ML
type float. In the following, S stands for a C base type or its ML counterpart, without

distinction.
C variable declarations allowed and their ML translations are given in the following

schema;:

e global variable
~ [x] ==:Fxet

— [B* x] = x: B ref
~ |8 £[1] = x: B axray

e local variable
- [8x] =x:p8 ref
e function parameter

- [Bx]=x:8

— [B* x] = x: B ref
= [Bxll] =x: B arway

In the following we write x : 7, /7, if a variable x has C type 71 and ML type 7.

Left values. The translation of a C left value e is written le]; and defined by:
[z] == ifx:B/B ref
[*x] = x if x: B*/B ref
[xCel] = xlel ifx:B[1/B array

Expressions. The translation of a C expression e is written [e] and defined by

' ifx: ref
. { /6

X otherwise

X := [eq]; 'x if [e1]; = x
-[[e1=32]]:{ [e2] [e1]

let i = [ey] in x[i] := [ex]; x[3] if [e,], = x[e}]

x :=Ixop [es]; 'x if fe1]: = x
o [e; op=ey] = . o . _ o :
let i = [e}] in x[2] := x[c] op [ex]; x[i] if [e,]) = x[e]]
with op € {+,-,%,/,% &, ~, | }. Notice that ++e ise += 1 and ——e is e -= 1.

letv=!xinx := Ix+ 1; lvy if [e], = x
o [e++] =

let i =[€'] in let v = x[2] in x[{] := x[3] + 1; v if [e], = x[e]
o [e1,] = [e1]; [ea]
o [er 7 ey : es] = if [e;] then [ey] else [es]

e [e; op es] = let vy = [e;] in let vy = [es] in vy op vy

with op € {+,-,%,/,% & ", |}

o [e; op ey] = if [e; op ey, then 1 else 0

with op € {==, 1=,>>= < <= &&, ||}
o [le] = if [e], then 0 else 1

o [-e] =[]

o [*x] = !x, ifx:pB*/8 ref

[&x] = x, ifx:B/B ref

[x[el] = x[[e]]

e [c] =¢, for a constant c

[£Cer,...,en)] = let vy = [e1] in ...1let v, = [e,] in (£ vy ... w,)

Boolean expressions. C does not have booleans. However, the translation is more natural
when a C expression e used as a boolean is directly translated into an ML boolean. Such an
interpretation is written [e], and defined by:

o [e1 op es] = let vy = [e1] in let vy = [ey] in vy op v,

with op € {==, 1=,> >= < <=}

[er && ey] = if [e1]s then [es], else false

[er Il ex] = if [e1], then true else [es]s
e ['e] = not [e],

[e]ls = [e] <> 0, otherwise

Note: When translating expressions and boolean expressions, coercions from integers to
floating points are inserted when needed.

Statements. The translation of a C statement s is written [s], and defined by:

o [e]; = let - =[e] in void
o [er; e2]s = [en]s; [ez2]s

e [{Ax=e; ... foxe=en; s}
= let x; = ref [e;] in ... let x, = ref [e,] in [s];

The constructs break and continue are translated using two ML exceptions Break and
Continue (without argument):

o [break]; = raise Break

e [continue]; = raise Continue

Helper functions break(m) and continue(m) are defined as

break(m) = try m with Break -> void end
continue(m) = try m with Continue -> void end

whenever m may raise Break or Continue, respectively, and as m otherwise. Then loops are
translated as follows:
o [for(e;; e; 83) s, =

[e1]; break(while [es] do continue([s; ss],) done)
e [while (e) s]; = break(while [e] do continue([s],) done)

o [do e while(s)], = [s; while (e) s],

Finally, abrupt returns are also translated using an ML exception Return with the
returned value as argument (thus, such an exception is introduced for each possible returned

type):

o [return e], = raise (Return [e])

[] ![f(Tl X].:"':TTE xﬂ) { S }]}3 =

let £ (xi:[n]) ... (xn:[m]) = try [s]s with Return v -> v end

3 Practical use

Why is run as a batch compiler, taking input source files on its command line and producing
files containing the verification conditions. The prover is selected using a command line
option. Input source files can be ML or C programs, with a common syntax for annotations.

The latter is a homemade syntax for first-order predicates.

ML syntax is very close to Objective Caml’s one [2], with a few differences: annotations
are part of the syntax, enclosed with brackets; there is no type inference and thus types must
be explicitly declared; finally, array syntax is C-like. For instance, here is how the Hoare
triple (1) given in Section 2 is written in Why’s ML input syntax:

{x>0andy>17}beginx :=!x+1;y:=!y*!xend {y>y@}

where y@ is the notation for the value of y in the prestate.

C programs are written in the standard ANSI C syntax and annotated using the distin-
guished kind of C comments /@ ... */. Here is for instance how the Hoare triple (1) is
passed to Why in C syntax:

/¥@ x > 0 and y > 1 #/ { x++; y *= x; } /*@ y > y@ */

The goto set apart, all C constructs are covered. C programs are only limited by: (1) the
aliasing restriction already discussed in Section 2.2; and (2) the absence of pointer arithmetic,
which means that the notions of arrays and pointers are clearly separated.

10

3.1 Example

We illustrate the use of Why on the verification of the small piece of C code given in Figure 2.
This is a function index which looks for a value v in an array t of integers. The size of t is
given as a parameter n. When v is found, an index is returned giving one position for v in
t; otherwise n is returned, meaning that v was not found in t. The code uses a while loop,
from which we exit with a break as soon as v is found. (The code could be written with
a for loop or could use a return to terminate as soon as v is found; the annotations and
proofs would be exactly the same.)

int index(int t[J], int n, int v) {
int i = 0;
while (i < n) {
if (t[i] == v) break;
i++;
¥
return i;

}

Figure 2: The C function index

First, we give the function a specification, as a precondition and a postcondition. Both
are inserted respectively before and after the function body. In particular, the precondition
clearly appears after the function parameters, thus expressing that they are part of the
prestate. The precondition expresses that n is the size of t:

/*#@ array_length(t) = n */

Note that array_length is not a C function; it is used inside an annotation and thus belongs
to the logical world (the model), where C arrays are modeled by some datatype for which
the size is computable (by array_length). Though C arrays do not have a computable size,
this is a mandatory notion on the logical side to generate conditions expressing that array
accesses and updates are legal, i.e. done within the array bounds. The postcondition simply
expresses that the returned value is an index where v occurs in t, as soon as it is within the
bounds: '

/*@ 0 <= result < n -> t[result] = v */

The next step consists in annotating the loop, with an invariant and a variant. The
invariant expresses that v was not yet found, 7.e. does not appear in t for indices less that
i. It also maintains the property 0 <= i, which is needed to prove that the access t[i]
is legal. The variant is n - i (when no order relation is specified, it defaults to the well-
founded relation R on Z* defined by t Ry =z <y A 0<y). The C code fully annotated
in given in Figure 3; note that this is still ANSI C code.

Assuming this code to be in search.c and a user willing to use Coq as prover, Why is
simply invoked by

11

int index(int t[], int n, int v) /%@ array_length(t) = n */ {
int i = 0;
while (i < n)
/*Q invariant 0 <= i and forall k:int. 0 <=k < i -> t[k] <> v
variant n - i */ {
if (t[i] == v) break;
i++;
}
return i;
}

/*¥@ 0 <= result < n -> t[result] = v */

Figure 3: The C function index annotated

why --coq search.c

A Cogq file search_why.v is produced, which contains five lemmas with empty proofs to be
filled in. These lemmas express: (1) the legality of the array access t[i]; (2) the validity of
the postcondition when exiting the loop using break; (3) the preservation of the invariant by
the loop body, together with the decreasing of the variant; (4) the validity of the invariant
when entering the loop; and (5) the validity of the postcondition when exiting the loop
normally. All lemmas are actually automatically discharged by Coq, except the third one
which requires two lines of proof script.

These obligations are exactly what the user is expecting and the internal translation to
ML code, including the use of exceptions implied by the break construct, is totally transpar-
ent. This internal ML code is given Figure 4 (it can be obtained from Why automatically).
As expected, the C code annotations become annotations for the ML code without any
change.

3.2 Avalilability

Why is open source and freely available from http://why.1ri.fr/. It is written in Objective
Caml [2]. Documentation includes a tutorial, a reference manual and many examples, all
freely available from the web site.

4 Verifying Java programs

Why does not handle JAVA programs by itself. However, this can be achieved by using Why in
combination with the Krakatoa tool [5]. Developed by C. Marché, C. Paulin and X. Urbain,
this other tool tackles JAVA programs annotated using the Java Modeling Language (JML for
short) [15]. Such programs are translated into Why ML input code, expressing the semantics
of the original JAVA code. A Coq model is produced beside. The combined use of Why and
Krakatoa is illustrated on Figure 5.

12

let index = fun (t: int array) (n:int) (v:int) ->
{ array_length(t) = n }
let i = ref 0 in
begin
try
while !i < n do
{ invariant 0 <= i and forall k:int. 0 <=k < i -> t[k] <> v
variant n - i }
if t[!i] = v then raise Break;
i:= 1+ 1;
done
with Break => void end;
i
end
{ 0 <= result < n -> t[result] = v }

Figure 4: The ML translation for function index

Y L-annotated JAva]

KRAKATOA |

| WHY

’_-[Proof obligations

CoQ

Assisted proof

Figure 5: Verifying JAVA programs using Krakatoa and Why

13

This Coq model is a low level memory model, where objects are addresses in the JAVA
heap. This heap is modeled as a mapping from addresses to typed objects, which contain
primitive values or other addresses. From the point of view of Why, there is only one mutable
data, which is the reference on the current state of the heap. Consequently, the anti-aliasing
restrictions exposed in Section 2.2 do not apply and the whole sequential JAVA is covered.

Currently, only the Coq output of Why is meaningful when verifying Java-JML programs
using Krakatoa, since the latter only defines a Coq model. Adapting this model to another
prover is feasible, though nontrivial.

5 Future work

Why can be improved in many directions. Here are some of the planned developments.

Symbolic evaluation. Why is the ideal place to perform symbolic evaluation of annotated
programs. As suggested in [6], this is an efficient way to debug specifications. For instance,
a loop can be unrolled a given number of times and verification conditions will be generated
for many different control flow paths, corresponding to the first iterations of the loop. If
there is a bug in the specification or the program, it is likely to be discovered while trying
to establish these conditions, without entering the heavy process of finding and verifying
a loop invariant. Similarly, partial evaluation can be performed on a program where some
parameters are instantiated on suitable test values and then conditions can be generated for
the resulting program, possibly leading to the early discovery of a bug.

Memory model. To tackle all aspects of the ML and C languages—including data struc-
tures with pointers, possible aliasing, pointer arithmetic, etc.—a low level memory model
has to be designed (two models, actually, since ML and C obviously differ on this point). Fol-
lowing the Krakatoa approach, the memory model is designed entirely on the logical side and
handled in programs through a global reference on the current state of the heap. (Stack vari-
ables, however, may still be represented by local references.) Then the language constructs
can be interpreted in this new framework, by mere syntactic sugar. The whole technology—
typing with effects, weakest preconditions, functional interpretation—is unchanged.

Realistic integer and floating point arithmetic. Currently, integers are modeled using
arbitrary precision arithmetic provided by the provers (type Z in Cog, int in PVS and num
in HOL Light). Though satisfactory in many cases, it does not reflect the program semantics:
integer overflow has to be considered when seriously verifying some critical code. Clearly,
there are two main solutions. The first one is to precisely model the machine behavior
and its overflows. This is for instance the approach of B. Jacobs [14] in the context of
the Loop project [19]. The second solution is to add the necessary conditions to exclude
overflows. Then arbitrary precision arithmetic could still be used on the prover side. This
second solution seems reasonable since few programs may actually rely on integer overflow
to behave correctly. However, we plan to implement both approaches in Why.

14

Similarly, floating point numbers are currently modeled using the axiomatization of R
provided by the provers (type R in Coq and real in PVS and HOL Light). Existing axiom-
atizations of the IEEE 754 floating point arithmetic (by J. Harrison in HOL Light [11] and
by L. Théry in Coq [17]) could be used as models. Though really more difficult, it is a
challenging goal to verify a floating point algorithm without neglecting the roundings.

Module system. Why is already implementing some parts of the ML language and of its
type system. It seems natural to pursue in this way and to incorporate other ML features
(and then to have other languages benefit from this, as already done for C programs). ML
module system is such a feature. In particular, X. Leroy modular module system [16] could
be nicely adapted to our types with effect and specification. This would lift the notion of
modularity, currently at the level of functions, to the level of modules. Moreover, this would
permit a greater abstraction at the level module, where the interface could show a model
actually quite far from the implementation.

Acknowledgments. [am grateful to the Krakatoa authors, C. Marché, C. Paulin and
X. Urbain, for many stimulating discussions. I also thank the very first Why users, S. Boulmé,
M. Lévy, S. Ranise and L. Théry, for their precious feedback.

References

[1] The Coq Proof Assistant. http://coq.inria.fr/.

[2] The Objective Caml language. http://caml.inria.fr/.

(3] The PVS Specification and Verification System. http://pvs.csl.sri.com/.
[4] The Why verification tool. http://why.1ri.fr/.

[5] Claude Marché, Christine Paulin and Xavier Urbain. The Krakatoa Tool for JML/Java
Program Certification. Submitted to JLAP. http://www.1lri.fr/ marche/krakatoa/.

[6] D. Déharbe and S. Ranise. BDD-Driven First-Order Satisfiability Procedures. Technical
Report 4630, INRIA, November 2002.

[7] J.-C. Fillidtre. Preuve de programmes impératifs en théorie des types. These de doctorat,
Université Paris-Sud, July 1999.

[8] J.-C. Fillidtre. Formal Proof of a Program: Find. Science of Computer Programiming,
2001. To appear.

[9] J.-C. Fillidtre. Verification of Non-Functional Programs using Interpretations in Type
Theory. Journal of Functional Programming, 13(4):709-745, July 2003. English trans-
lation of [7].

[10] John Harrison. HOL Light. http://www.cl.cam.ac.uk/users/jrh/hol-light/.

15

[11] John Harrison. A Machine-Checked Theory of Floating Point Arithmetic. In Interna-

[12]

tional Conference on Theorem Proving in Higher Order Logics, LNCS, pages 113-130,
Nice, France, 1999. Springer-Verlag.

C. A. R. Hoare. Proof of a program: Find. Communications of the ACM, 14(1):39-45,
January 1971. Also in [13] pages 59-74.

[13] C. A. R. Hoare and C. B. Jones. Essays in Computing Science. Prentice Hall, 1989.

[14]

[15]

[18]

[19]

B. Jacobs. Java’s Integral Types in PVS. Manuscript. http://www.cs.kun.nl/bart/
PAPERS/integral.ps.Z.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-06i, Iowa State
University, 2000.

Xavier Leroy. A modular module system. Journal of Functional Programming, 10(3),
2000.

Laurence Rideau Marc Daumas and Laurent Théry. A Generic Library for Floating-
Point Numbers and its Application to Exact Computing. In International Conference
on Theorem Proving in Higher Order Logics, volume 2152 of LNCS, pages 169-184,
2001.

Silvio Ranise and David Déharbe. The haRVey decision procedure. http://wuw.loria.
fr/“ranise/haRVey/.

J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In T. Margaria
and W. Yi (eds.), editors, Tools and Algorithms for the Construction and Analysis of
Software (TACAS, volume 2031 of LNCS, pages 299-312. Springer-Verlag, 2001.

16

11345 -

1346

1347

1348

1349
1350
1351
1352

1353

1356

1357

1358

1359

1360

1361

1362

1363

VRAPPORTS INTERNES AU LRI - ANNEE 2003

Nbre de
L Pages:

Nom

FLANDRIN E
Ll H
WEI B

BARTH D
BERTHOME P
LAFOREST C

VIAL S

FLANDRIN E
LI H
MARCZYK A
WOZNIAK M

AMAR D
FLANDRIN E

GANCARZEWICZ G

WOJDA A P

FRAIGNIAUD P

GAURON P

FAIK T
SACLE J F

FAVARON O
HENNING M A

HU 2
LI H

JOHNEN C
TIXEUIL S
PETITJEAN E

BERTHOME P
DIALLO M
FERREIRA A

FAVARON O
HENNING M A

JOHNEN C
PETIT F
TIXEUIL S

FRANOVA M

HERAULT T
LASSAIGNE R
MAGNIETTE F
PEYRONNET S

HU Z
LI H

DELAET S

DUCOURTHIAL B

TIXEUIL S
YAO J Y

ROUSSEL N
EVANS H
HANSEN H

Titre
ASUFFICIENT CONDITIONFOR
PANCYCLABILITY OF GRAPHS
SOME EULERIAN PARAMETERS ABOUT

PERFORMANCES OF A CONVERGENCE
ROUTING IN A 2D-MESH NETWORK

A CHVATAL-ERDOS TYPE CONDITION FOR
PANCYCLABILITY

BIPARTITE GRAPHS WITH EVERY MATCHING

INACYCLE

THE CONTENT-ADDRESSABLE NETWORK D2B

SOME b-CONTINUQOUS CLASSES OF GRAPH

TOTAL DOMINATION IN CLAW-FREE GRAPHS
WITH MINIMUM DEGREE TWO

WEAK CYCLE PARTITION INVOLVING DEGREE
SUM CONDITIONS

ROUTE PRESERVING STABILIZATION

DESIGNING TIMED TEST CASES FROM REGION
GRAPHS

GENERALIZED PARAMETRIC
MULTI-TERMINAL FLOW PROBLEM

PAIRED DOMINATION IN CLAW-FREE CUBIC
GRAPHS

AUTO-STABILISATION ET PROTOCOLES
RESEAU

LA "FOLIE" DE BRUNELLESCHI ET LA
CONCEPTION DES SYSTEMES COMPLEXES

APPROXIMATE PROBABILISTIC MODEL
CHECKING

A NOTE ON ORE CONDITION AND CYCLE
STRUCTURE

SELF-STABILIZATION WITH r-OPERATORS IN
UNRELIABLE DIRECTED NETWORKS

RAPPORT SCIENTIFIQUE PRESENTE POUR
L'OBTENTION D'UNE HABILITATION A DIRIGER
DES RECHERCHES

MIRRORSPACE : USING PROXIMITY AS AN
INTERFACE TO VIDEO-MEDIATED
COMMUNICATION

16 PAGES

30 PAGES

12 PAGES

26 PAGES

26 PAGES

14 PAGES

14 PAGES

14 PAGES

28 PAGES

14 PAGES

18 PAGES

16 PAGES

26 PAGES

26 PAGES

18 PAGES

10 PAGES

24 PAGES

72 PAGES

10 PAGES

01/2003

01/2003

01/2003

01/2003

01/2003
01/2003
01/2003
02/2003
03/2003
03/2003

03/2003

03/2003

03/2003
04/2003
01/2003
04/2003
04/2003

07/2003

07/2003

RAPPORTS INTERNES AU LRI - ANNEE 2003

N°e | Nom | Titre . Nbre de Date parutlon
A e e e e I SN R =i SRS (e 1 o8 e pages =
1364 GOURAUD S D | GENERATION DE TESTS A L'AIDE D'OUTILS 24 PAGES 07/2003

. COMBINATOIRES : PREMIERS RESULTATS
| EXPERIMENTAUX
1365 BADIS H 'DISTRIBUTED ALGORITHMS FOR SINGLE AND 22 PAGES 07/2003

AL AGHA K MULTIPLE-METRIC LINK STATE QoS ROUTING

