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CHAPTER I

Introduction (shortened)

An important Data Mining task is the discovery of frequent itemsets. It consists in finding, in a
propositional database, sets of items that appear in more than ¢ transactions. A typical application
is the market basket analysis: each transaction is a sale report, and the items are the products sold.
Finding the products that are often sold together is a valuable information for sales managers. A
lot of works have addressed this problem in the last ten years ([AS94], [SON95], [Toi96], [LK98],
[PBTL99] among others).

Nowadays, the structure of data is changing. More and more available data from telecommuni-
cations, chemistry, genomics are structured as trees or graphs. Finding frequent structures is still
important, but the previous algorithms can no longer be used.

Two solutions can be devised:

e Either use a general approach, that find frequent structures in a language expressive enough to
represend all kinds of structured data. It’s the idea of the WARMR system ([Deh98], [DT99]).

e Or use an approach specific to one data structure, hence optimised for this structure. This
was done for graphs by [IWMO00], and for trees by [AAKT02] and [Zak02] (restricted to find
frequent trees whose siblings order is the same as in the data).

As expected, the specific approaches are more efficient than WARMR on the data structure they
are specific of.

Our motivation is to be able to find efficiently frequent structures in collections of XML docu-
ments. XML documents can be modeled as labelled ordered trees. The labels are the tags of the
nodes, and the tree structure comes from the XML tag nesting.

So we are interested in approaches specific to trees. The approach of [AAK102] finds frequent
structures that have always exactly the same shape in the data, like shown in figure I.1.

The approach of [Zak(02] allows some changes in the label nesting, handling some heterogeneity
in the data (see figure 1.2).

However, when looking at figures I.1 and 1.2, we can notice that the node editor is never taken
into account in the frequent trees. It’s because for the algorithms of [AAK102] and [Zak02], the
order of the siblings in the frequent trees and in the documents must be the same. And the editor
node is once on the rightmost position (tree A;), once on the leftmost position (tree Az). So it
cannot be seen as frequent by these algorithins.
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Figure 1.2: Biggest tree found by TreeMiner [Zak02] from A; and Ay (¢ = 2)



But the information that a book have an editor is always present. We think that this is an
important information, that must be reflected in the frequent trees our approach will find (see
figure 1.3).

R [biblio | book

"litle | [ author | [editor \’ : book : [title | [author | [editor |
@ v\éditor | Leive ] \amho‘r‘a\' [ country]
[infos |
Al A2 Frequent tree

Figure 1.3: Biggest frequent tree found by our algorithms with A; and Ay (¢ = 2)

Contributions of this PhD

Our goal is to find frequent trees in labelled ordered trees, extending the previous works from
Asai and Zaki by allowing a greater flexibility in the frequent structures to find.

The algorithms we have designed allow differences in tag nesting (like [Zak02]), and do not take
into account the order of the siblings in the documents. Hence our algorithms are adapted to find
frequent trees in heterogeneous collections of XML documents.

In such collections, several tags can refer to the same concept. For example, a car can be
addressed with tags such as: car, automobile, motor (synonyms). For our frequent tree discovery
algorithm to be as efficient as possible, ideally the problems of synonymy and polysemy should be
solved. However, this represents a different research topic, and we have decided not to focus on
this task. For some preliminary ideas, the interested reader can read [TRSO01].

For the rest of this thesis, we suppose we have a preprocessor unifying the tags refering to the
same concept, so we have neither synonymy nor polysemy problems. The processing chain is shown
in figure 1.4.

The frequent trees we consider are more general than those considered in previous works. This
comes with an higher algorithmic complexity: hence Kilpelinen shown in [Kil92] that if the problem
of testing tree inclusion in the ordered case was polynomial, it was NP-complete in the unordered
case that we address.

In order to be efficient despite this bigger difficulty, we have explored two different approaches:
the first one resulted in the developement of the TREEFINDER algorithm ([TRS02]), the second one
lead to the creation of the algorithms DRYAL and DRYADE.

TREEFINDER: approximation of the set of frequent trees

Because of the generality of the researched structures, our algorithms can be confronted with huge
search spaces. If the data are too numerous or have too complex frequent trees, this space can
become so huge that finding frequent trees in a reasonable amount of time will become impossible.
Then, a complete approach, i.e. finding all the frequent trees, can be too expensive. Hence we



Tree database
(synonymy and polysenmy)

Preprocessor

Modified tree database

(unified tag names)

Y

Frequent tree discovery

Frequent trees

Figure 1.4: Processing chain to find frequent trees from an heterogeneous collection of XML docu-
ments



developped an approzimate algorithm, TREEFINDER, that finds only one part of all the frequent
trees that are in the data. For this algorithm, we made an qualitative and quantitative study of
the frequent trees found, and also of those not found. This allows to estimate the quality of our
approximation.

DrYAL and DRYADE: a new complete approach for searching frequent trees

The DRYAL and DRYADE algorithms make use of the specific features of the tree structure to be
efficient, and are based on the two following principles.

Constructive approach:

Our approach is a levelwise approach, that first creates frequent trees of depth 1, then assembles
them to get frequent trees of depth 2, and so on until finding all the frequent trees. We were inspired
by the recent vertical methods (see [ZPOL97]), which are often more efficient than the classical
APRIORI-like approaches (called horizontal). Vertical approaches are usually more adapted to the
discovery of complex frequent itemsets.

Divide to reformulate:

An usual Computer Science way of solving a complex problem is called “divide and conquer”.
The problem is split into simpler subproblems, and from the solutions of the subproblems the so-
lution of the general problem is found. We were inspired by this method to solve our problem in a
way that the subproblems come, after a reformulation, to the computation of frequent itemsets
in transactional data. Thanks to these reformulations, our approach benefits from the consider-
able amount of work that was devoted to the problem of finding frequent itemsets in transactional
data. Any improvement on these techniques can be used to improve our approach. We also present
in this thesis the concept of closed frequent tree, which was first presented in the CMTreeMiner
system [CYXMO04], an algorithm developped concurrently to DRYADE and addressing a simpler fre-
quent tree discovery problem. The use of closed trees allows exponential performance improvement
without loss of information.

Restriction

To be able to cope with a huge search space, we impose for our algorithms DRYAL and DRYADE a
restriction on the frequent trees that we can discover: these are the trees where a node cannot have
two children with same label. To discriminate them, we call such frequent trees frequent patterns.
They correspond to XML query patterns proposed in [DRR™03].

This restriction avoids a too big combinatorial explosion. In chapter III, we will outline when
the restriction is used in the algorithms, and the complexity gain.

The figure 1.5 illustrates the kind of frequent trees we cannot find.

The frequent tree a) corresponds to a journal with an article having a picture and text and an
article with a drawing and text. With the restriction we impose, we cannot find tree a), but we find
the two frequent trees of b). The frequent tree a) is more precise and corresponds to a fine-grained
analysis of the XML documents : we can differentiate several kinds of journals for example. The
two frequent trees of b) correspond to a coarser-grained analysis, representing a little information
loss compared to a). But they are far less time-expensive to obtain, which can be crucial for some
applications.

Outline

To conclude this introduction, we give the outline of this thesis:
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Figure 1.5: Frequent trees discovered: a) without restriction b) with the restriction on siblings
labels that we impose
e The Chapter II presents formally our problem.

o Not translated: state of the art, with two parts, the first on on frequent itemset discovery, and
the second one about related works on frequent trees by [AAK"02] and [Zak02]

e Not translated: TREEFINDER. [t is a french translation of our ICDM’02 article [TRS02]

o The Chapter III is about the algorithms DRYAL and DRYADE, which are sound and com-
plete algorithm for finding frequent patterns. The algorithms are detailed, soundness and
completeness proofs are given.

e The Chapter IV presents an experimental study of DRYADE’s performances. The study was
realised with artifical and real data, and DRYADE was compared to WARMR.

e The Chapter V concludes the thesis and gives some perspectives.



CHAPTER II

Definitions

In this chapter, we will define formally the data we are working on, as well as the problem we
address in this thesis.

1 Labelled ordered trees: definitions

The data type we will nearly always deal with in this thesis is the tree. Hence, we will define in this
section a theoretical framework adapted to trees, and adapted to the discovery of frequent patterns
into trees. The theoretical framework we define is very common, and takes as a starting point the
framework defined into Pekka Kilpelinen’s PhD [Kil92].

Definition 1 (Binary relation) Let D be a set. A binary relation R over D is a subset of the
Cartesian product D x D.

Definition 2 (Transitive closure) The transitive closure of R, written as R™, is defined by:

R' = {(zy) | (z,y) € D*}
R = {(z,y) | 3z € D st (z,2) € Rand (z,y) € R"*}, n >0
rR* = |JR
n>0

Definition 3 (Tree) A tree is defined by the 3-tuple T = (Nr, Ar,root(T)) where Nt is a set of
nodes, Ar C N% is a binary relation over Nr, and root(T) € Nt is a specific node called the root.
For any pair (u,v) € Ar, we say that (u,v) is an arc of the tree, and that u is the parent of v,
written as u = parent(v). Ap must satisfy:

e 700t(T) has no parent.
e Every node of the tree (except the root) has exactly one parent.

e From the root, it is possible to reach any node in the tree by following arcs in Ar, i.e. for all
node v € Ny except the root, (root(T),v) € Af.



Notations : Let T be a tree. Let u € N7 be a node of T. All the nodes of T having u as
parent will be called the children of u :

children(u) = {v € Nr | (u,v) € Ar}
We define the descendants of u by :
descendants(u) = {v € Ny | (u,v) € AL}
ande the ancestors of u by :
ancestors(u) = {v € Ny | (v,u) € AL}

An arc sequence in Ay (u1,u2), ..., (Up—1,Uy) from u; to uy, is called a path between u; and uy,.
This path length is n — 1.

The nodes of N having no children are called leaves. The other nodes of N are called internal
nodes.

We will call depth of the tree T', written as depth(T), 1 plus the length of the longest path from
the root of T to a leaf of T'.

Definition 4 (Subtree) Let T be a tree. Let uw € Nt be a node of T. The subtree of T' having u
as root, written as T'[u], is the tree T[u] = (Nrpy), Arpu), u) such as:

® Nyppy = {u} Udescendants(u)
o Arp) = Ar N (Nrp) X Nrj)-

Definition 5 (Labelled tree) Let E be a label set. A tree labelled by E is defined by (N, A,root(T), @)
such as:

e (N, A, root(T)) is a tree.
o ¢ : N w— FE is an application mapping each node of N to a label in E.
Definition 6 (Ordered tree) An ordered tree is defined by (N, Ap,root(T), <) such as:

e (Np,Ar,root(T)) is a tree.

e <C N? is the sibling relation, it’s a binary relation defining a partial order on N% and a
total order on the children of any node of Ny. For an internal node u, its children uq, ..., Uy
(n > 0) are ordered from left to right such as u1 < ug < ... < Up.

According to this order, u; is called u’s i-th child.

Notations : Let T be an ordered tree, and let u be an internal node of T' having n children
UL, ..., Up. The children have the order: u; < ug < ... < u,. Then for all 7 € [1,n] we write:

e Vj < iwujisaleft sibling of u; (i > 1).
e u; 1 is a immediate left sibling of u; (i > 1).

o Vj > i u;is a right sibling of u; (i <n).



e u;1 is a immediate right sibling of u; (i < n).

In the following, all the trees considered are, unless otherwise stated, labelled ordered trees. We
then use the word tree instead of "labelled ordered trees”.

Node identification: The nodes of a tree can be identified by assigning them numbers, each
node having a unique number determined by its position in the tree.

The two main ways to assign numbers to nodes in a tree are the prefix order and the postfix
order.

Definition 7 (Prefix order) Let T be a tree. To a node u € Ny we can assign a number in the
prefix order pre(u) with the following rules:

e pre(root(T)) =1
o The leftmost child of u has the prefiz number of u more 1 : pre(ui) = pre(u) + 1

o Let v be the immediate left sibling of u. Let p be the biggest prefiz number assigned in T[v).
Then pre(u) =p + 1.

Definition 8 (Postfix order) Let T be a tree. To a node u € Ny we can assign a number in the
postfixz order post(u) with the following rules:

e Let u be the leftmost leaf of T. Then post(u) = 1.

o Let u be an internal node of T, and let p be the biggest postfiz number assigned to a descendant
of u. Then post(u) =p+ 1.

e Let v be the immediate right sibling of u. Then the postfix number of the leftmost leaf of T[v]
is post(u) + 1.

One can notice that the prefix (postfix) order comes to number the tree nodes during a prefix
(postfix) traversal.

2 Tree inclusion

There many ways to define the inclusion between two trees 77 and T5. For example, in his PhD
[Kil92], Kilpelinen defines 10 different tree inclusion relations.

All these definitions are based on the existence of a mapping from the nodes of T} towards
the nodes of T5. This mappings strongly or weakly preserves the labels of the nodes and the tree
structure.

Differences come from the preservation properties that are considered, and from the injectivity
or non-injectivity of the mapping.

In the following definition, we give all the inclusion definitions that we will use in this thesis.
We will then show the differences between these inclusion definitions on examples.

Definition 9 ((strict)(exact)(ordered)(weak) tree inclusion) Let T} and T be two labelled
ordered trees, T is included in T, written as Ty T Ty, if there exists a mapping pu : Npy — N,
such as:

1. p preserves labels, strictly (1.a) or according to an order <g on labels (1.b)



1.a) strict preservation: Yu € Ny, or, (u) = o1, (u(u))
1.b) order-bound prservation : Yu € Ny, o1, (u) <g o1, (p(u))

If the preservation is strict (1.a)), we say that the inclusion is strict.
2. p preserves the parent relationship (2.a) or the ancestor relationship (2.b).

2.a) parent relationship preservation : Yu,v € Np, if (u,v) € Ap, then (p(u), u(v)) € Ap,
2.b) ancestor relationship preservation : Yu,v € Ny, if (u,v) € A, then (u(u), p(v)) € AE

If the parent relationship is preserved (2.a), we say that the inclusion is exact.
Optionnaly:

3. p preserves children order : Yu,v € Ny if u 21, v then p(u) =7, p(v). If the children order
is preserved, we say that the inclusion is ordered.

4. | is injective : Yu,v € Ny, if u # v then p(u) # p(v). If injectivity isn’t satisfied, we say
that the inclusion is weak.

This general definition allows us to build many variants. The most constrained inclusion defi-
nition is the strict exact ordered inclusion.

The figure II.1 gives the example of a tree 77 included in a tree 75 by this definition. But the
trees 13 to 17 from the figures I1.2 to I11.6 are not included in 75 by this definition.

However, there is a strict exact inclusion between T3 and 75 (fig. I1.2), and a strict ordered
inclusion between 7y and T3 (fig. I1.3).

Between T5 and T, there is a strict inclusion (fig. I11.4).

And between Ty and T5, we can fing a strict weak inclusion (fig. IL.5).

Last, the figure I1.6 is an example of an exact ordered inclusion using a label order <g such
as in-folio <g livre.

T1 T2
DOOK [ > book

title author title author

ISBN

Figure II.1: Strict exact ordered inclusion

Note that for sake of legibility, we didn’t show node identifiers in the figures I1.1 to I1.6. We’ll
introduce node identifiers only when they are really necessary.



T3 T2
DOOK [ > book
author title title author
ISBN
Figure I1.2: Strict exact inclusion (not ordered)
T4 T2
DOOK [ > book
title author ISBN title author
- 7 7
...... = ISBN
Figure I1.3: Strict ordered inclusion (not exact)
T5 T2
book book
author ISBN titte oo = title author

Figure I1.4: Stricte inclusion (not exact, not ordered)




T6 T2
book book
author ISBN titte oo = title author
author
————————— ISBN
Figure IL.5: strict weak inclusion (not ordered, not exact)
T7 T2
IN—FOlI0 |- > book
title author title author
ISBN

Figure I1.6: Not strict but exact and ordered inclusion




The probleme of the tree inclusion test is a difficult problem. Determining if a tree is included
in another tree is either polynomial (ordered inclusions) or NP-complete (other inclusions). A
detailled complexity reckoning, as well as tree inclusion algorithms, can be found in [Kil92].

Notation : For a given tree inclusion C, the set of mappings between T7 and T3 will be written
5ME(T1, Ts).

The general problem of tree inclusion is to find, given two trees 17 and T3, all the subtrees of T5
that are occurrences of T7. We then say that the root of T, subtree that is an occurrence of T is a
root occurrence of Ty. The general problem of tree inclusion is more difficult than the tree inclusion
test between two trees. All the occurrences of tree 77 in tree T» have to be found, whereas doing
the test simply means proving the existence of one of them.

We focused on a restriction of this problem, which is finding all the subtrees of 75 that are
occurrences of 77 with a different root.

This is the same as finding all the root occurrences of 77 in T5.

Definition 10 (Root occurrence) Let C be an inclusion definition between trees, and let Ty and
Ty be two trees such as Ty C Ty. Let p be a mapping from Ty to Ty. We call root occurrence of
T, for p the node u of Ty such that u = p(root(1y)).

The set of root occurrences of Ty in Ty is called Locer (T1,T2) and is defined by:

Loce (T1,Ty) = {u € Ng, | u = p(root(T1)) with p € EMc(T1,To)}

Note that for a root occurrence u there can be several mappings p satisfying the previous condi-
tions. The set of these mappings is written EMy(T1,T5).

Property 1 We have:
EML(Th, Th) = U EMy (T, T3)

u€ Locer (T1,T3)

Proof : Straightforward because Locc(T1,T») gives us all the roots of mappings, for each root
u € Loce(Th,Ty), EMy(T1, Ts) represents all the mappings associated to this root. So the union of
the EM (T, Ts) gives EM (T, Ty).

Remark 1 In the following, when no confusion is possible we will use the word occurrence of a
tree T for a root occurrence of T.

3 Frequent trees

We have seen in the introduction of this thesis that semi-structured documents can be represented
as trees. Hence a collection of such documents can be represented by a set of trees, that we will
regroup in a structure called tree database.

Definition 11 (Tree database) Let F = {T1,...,T,} be a set of trees, and let A = {idy, ...,idy }
be a set of identifiers such as forall i € [1,m] we associate the tree T; to the identifier id;.
A tree database BA is defined by the triple (D, A, ), with:

e D is a labelled ordered tree with labels in E, called data tree. The root v of D is a
specific node, whose label eg is not in E. The children of D are the trees Ty,..., Ty,
Vi € [1,m] D[r;] =T; (where r; is the root of T;).



e 0 : Np\r — A is a function for identifying tree nodes. Let Dlr;] be a subtree whose root is
the i-th child of r. Then ¢ is the function such as for all v € Npy,) we have 6(v) = id;.

The figure I1.7 presents a set of trees and the corresponding tree database.

A= {D17D27D3}

= e ] L»]

o] [e ] [e] [eJ[] L] [

Figure I1.7: A tree database example

Definition 12 (Projected of a tree in a datatree) Let BA = (D, A, ) be a tree database, T
an inclusion definition and P a tree such as P C D.

The projected of P in D, named projected(P, D), is the datatree whose root is the root of
D, and in which each node n is a node of D which is the image of a node of P by a mapping of
EMc(P,D). In projected(P, D), we have ny = parent(ng) if in D, ny = ancestor(ng) and if there
is no node of projected(P, D) in the path from ny to ny in D.

Property 2 By construction, this projected is unique.

The projected of a tree P in the datatree of figure I1.7 is shown in figure II.8.

We will see in chapter ITI that for two trees P and P’ such as P' C P, we may have to compute
the occurrences of P' in the projected of P, in order to compare them to the occurrences of P’ in
D. In the specific case where all the mappings between P’ and P send the root of P’ on the root
of P (i.e. Loccc(P',P) = {racine(P)}), the set of occurrences of P’ in the projected of P in D is
the same as the set of occurrences of P in D. This property is formalised below and will be used
in the algorithms of chapter III.

Property 3 Let BA=(D,A,0d) be a tree database, T an inclusion definition, P and P’ two trees
such as PPC PC D.
If Loccc (P, P) = {root(P)} then Loccc (P',projected(P, D)) = Locec (P, D).



Figure I1.8: Projected of a tree P in the datatree D of figure I1.7

The problem we are interested in is to find frequent tree patterns in a tree database. A frequent
tree pattern (called frequent tree in the following), is a tree that has for a given inclusion a number
of occurrences greater than a threshold defined at the start.

For a given inclusion definition, there are several ways to define tree frequency. One can define:

e the occurrence frequency, based on the number of tree occurrences in the datatree.

e the identifier frequency, counting the number of distinct trees (having different identifiers) of
the datatree in which in tree is included.

The difference between these two frequencies is that the first one is only based on the number
of occurrences of the tree in the datatree, whereas the second imposes that the occurrences appear
in distinct trees.

Definition 13 (Occurrences-frequent tree) Let BA = (D, A, ) be a tree database, C an in-
clusion definition, and € a frequency threshold. Then P is an occurrences-frequent tree of BA
if P has at least € occurrences in D, i.e. | Loccc (P, D) | > ¢

The occurrences support of P, written as S,(P), is defined by:

So(P) = | Loccc (P, D) |

Definition 14 (Identifier-frequent tree) Let BA = (D, A,{) be a tree database, T an inclusion
definition, and € a frequency threshold. Let P be a tree included in D, we call 1id the list of the
identifiers of the trees of D in which P is included. This list is the image by § of the elements of
Locer (P, D), so lid(P,D) ={d; | d; = é(u) and u € Loccc (P, D)}.

Then P is an identifier-frequent tree of BA if P is included in at least € distinct trees of
BA : |lid(P,D) > ¢ |

The identifier support of P, written as Sp(P), is defined by:

Sp(P) = [ lid(P, D) |

Remark 2 If a tree P est identifier-frequent, then it is also occurrences-frequent.



The figure I1.9 shows that with a threshold ¢, = 2, the tree of root A having as children B
and C is occurrences-frequent (the tree has 2 occurrences), but not identifier-frequent (the tree is
included is only one tree of the datatree). However, the tree of root D having as only child F is
included in the two trees identified by 77 and T5 of the datatree: so it is identifier-frequent.

Figure I1.9: Example of the differences between the frequency definitions

It is important to notice that an occurrence or an identifier can be seen as a clustering of several
mappings from P to D having a property in common. For an occurrence, this property is to give
the same image of the root; for an identifier, it is to give the same tree identifier for the different
images of the root.

4 Summary example

Consider the tree database B.A whose datatree Dx is given in figure I1.10, and occurrence frequen-
cies only.

With a frequency threshold of 2 and an inclusion with strict preservation of labels, the biggest
frequent tree is the tree AF represented in figure 11.11.

We have : Locc(AF,D) = {ni,ng}.

So EMc(AF,D) = EMy, (AF, D) UEMy(AF, D). These sets are given in the array II.1.

EMy, (AF, D) EMe(AF, D)
I A= T A= ng
B — ng B — nqg
C — N4 C— ng
D — ng D — nqg
p,” : A — ng
B — nqg
C — ng
D — nq3

Table I1.1: EMc(AF, D)
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CHAPTER III

The DRYAL and DRYADE
algorithms

1 Goal

We recall that the goal of the algorithms presented in this thesis is to discover frequent trees in a
tree database, as illustrated in figure III.1.

Bike Article

‘Model ‘ ‘ Km ‘ ‘Color ‘Modd ‘ ‘ Fﬂ'cture‘ Text ‘ Vehicules ‘ ‘Hou@s ‘
Document 1 ‘ Car ‘ ‘Trugk ‘
‘chr ‘ Status“’v
‘Modei ‘ ‘Color ‘ Km ‘ ‘General ‘
N
Document 2

(o]

‘Model ‘ ‘ Km ‘ ‘Color ‘

Freguent tree common to documents 1 and 2

Figure II1.1: An example of frequent tree discovery

As previously mentioned, in this chapter we restrict the frequent trees we want to discover to
frequent patterns, with a pattern being a tree where no node has two children with the same label.



We will go back to this restriction when we will describe the algorithms which make use of it, in
order to show the complexity benefits it allows.
This chapter is organised as follows :

o We will present a first frequent tree discovery algorithm, the DRYAL algorithm. This algorithm
represents the essence of our approach.

e Then we will present some ways of parameterizing DRYAL, allowing it to use different tree
inclusion definitions.

e The DRYADE! algorithm extends de DRYAL approach, and makes use of an algebraic property
(closed sets) to allow an efficient resolution beyond the limits of DRYAL.

For these two algorithms, we will give soundness and completeness proofs.
e The soundness proof ensures that all the results given by our algorithms are frequent patterns.

e The completeness proof ensures that our algorithm find all the frequent patterns that are in
the datatree.

We sum up in table 1 the notations given in chapter II.

C Tree inclusion (can be strict, exact, ordered, weak)  Definition 9 page 11
EM (T, Ty) Set of mappings between the trees T} and T
such that T C Ty
Locer (T, T3) Set of T5 nodes where maps the root of T; Definition 10 page 15
by a mapping from EM (T, T>)
EM, (T, T5) For a node u € Locec (T4, T3), Definition 10 page 15

set of mappings from EM(T1,Ts)
mapping the root of 77 on u

Table ITI.1: Notations summary

2 The DRyAL algorithm

For all this section, our tree inclusion definition will be the strict weak tree inclusion, noted C; ;
the mappings supporting the inclusion strictly preserve the labels, preserve the ancestor relationship
(but not necessarily the parent relationship) et are not necessarily injective.

To simplify reading, we will note Locc(X,Y’) instead of Locer, (X, Y).
2.1 Specifications
2.1.1 Input data

e BA=(D,A,J) a tree database

e L a set of labels

e ¢ a frequency threshold

'Dryads are magical creatures living in trees, and for trees. An old legend says that they all come from the blood
of Dryal, a young mortal girl having entered and perished in a magical forest.



2.1.2 Expected results

e All the frequent patterns present in B.A with a minimal threshold of e.

e For each frequent pattern PF', the algorithm also gives Locc(PF, D).

Notation : For a tree database BA and a frequency threshold ¢, we will note P the set of all
frequent patterns from B.A having at least the frequency threshold €.

2.2 Essence of the algorithm

All existing algorithms for frequent tree discovery are ”Generate and Test” algorithms ([AS94],
[Toi96], [BMS97], [Jr.98] among many others). It means that they create many candidate trees,
then test if these candidate trees are frequent. New candidate trees are created by adding one edge
to the detected frequent trees. This continues until no new frequent tree can be found.

This method is costly, because it explores a large part of the search space (frequent trees +
many infrequent candidates). So it can be slow, especially if the frequent trees to find are large.

Most frequent itemset discovery algorithms use the monotonicity property on frequency to prune
the search space. When searching for frequent structures, the structure itself can be used for further
pruning.

These heuristics will be the strong point of our approach.

We propose a constructive algorithm, using the constraints on frequency and on data structure
to genereate a candidate pattern set as small as possible, while remaining complete.

The algorithm we present thus computes all frequent patterns occurring in the data in a levelwise
manner, gradually adding structure to candidate patterns.

Our method is the following: we start by finding all frequent patterns of depth 1. Then we
hook together some of these patterns, in order to obtain new and more complex frequent patterns.
By repeated hookings, our algorithm computes all the frequent patterns occurring in the data.

The following paragraphs detail this approach and start by some definitions.

2.3 Definitions

Our starting point is the set PF Ay of frequent patterns of depth 1, which will be the basis for all
further hookings.

Definition 15 (PFA;) We call PF A; the set of frequent patterns of depth 1.
PFA, ={P | |Loce(P,D)| > ¢ and depth(P) = 1}

Example: Lets go back to the example of chapter II, given again in figure IT1.2.

With the frequency threshold ¢ = 2, the set PFA1 == {Pll,Plg,Plg,P14,P15,P16,P17,P18}
extracted from this datatree is represented in figure IIL.3.

We now define the hooking operator between patterns.

Definition 16 (Hooking) Let P be a frequent pattern, and P, € PFA;. We say that P and P,
are hookable, noted hookable(P, Py), if the label of the root of Py is the same as the label of at least
one of the leaves of P.

The set of nodes of Np where Py can hook is hook_nodes(P, P;).

The set of patterns resulting from the hooking of P and Py is noted P @ P;.

We have |hook_nodes(P, P1)| = |P & Pi|.
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Figure II1.2: Datatree example.
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Figure IT1.3: PF A; for Dx



Let hn € hook_nodes(P, P1) be a hook node. The unique pattern resulting from the hooking of
P and P; on hn is noted: P @y, P;.

Notice that @ is neither commutative nor associative.

Notation: Let {P[,..., P.} be a set of patterns, and let P, € PFA; be a frequent pattern of
depth 1. Then {P[,....,P,}® P, =}, P/ ® P\.

The figure II1.4 shows two hooking examples, the first one between two depth 1 patterns, and
the second one between an unspecified pattern and a depth 1 pattern.

Figure II1.4: Two hooking examples

Notice that the hooking of two frequent patterns PF; and PF; does not necesserarily gives
a frequent pattern. The following definition allows to select frequent patterns resulting from
successive hookings of frequent patterns.

Definition 17 (PFA;) Let i > 2. PFA; is the set of all frequent patterns resulting from the
successive hookings of © frequent patterns of depth 1. It is recursively defined as follows: for all
pattern P; € PFA;, there exists a pattern P;,_1 € PFA; 1 and a pattern P, € PF A, such that
P=PFP_,0P.

Example: The figure II1.5 shows the set PF Ay = {Pa1, Pao, Pog, Pos} for Dx.

Let P, € PFA; and P, € PFA; be two frequent patterns. Let P € P; & P;. To compute it’s
frequency and thus test it’s belonging to PF A;;1, we need to compute Locc(P, D). The important
point is to be able to determine Locc(P, D) from Locc(P;, D) and Loce(Py, D), hence avoiding
costly tree inclusion tests.

For this, we need to define the notion of hooking anchor in the data, that is for the hooking of
P, on P; the set of occurrences pairs of P; and P; characterizing the subtrees from data to which
the hooking of P; on P; can be associated by mapping.
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Figure I11.5: PF Ay for Dx

Definition 18 (Hooking anchored in data) Let P, € PFA; and P, € PFA; be two hookable
patterns. Let hn € Np, such that hn € hook_nodes(P;, P).

The hooking of Py on P; by hn is anchored in data if there exists n; € Loce(P;, D) and ny €
Loce(Py, D) such that there ezists p; € EMp, (P, D) and py € EMp,(P1) such that pi(hn) =
p1(root(Py)).

The set of suchs pairs (n;,n1) is called the data anchor of P;®p, Py, and is noted Anchorp,(P;, Py).

By extension Anchor(P;, Py) = Uhnehook_nodes(Pi,Pl) Anchorp, (P;, Py).

This definition is illustrated on figure IIL.6.
For a more concrete example, in the case of Dx, by examining figure II1.2 one can see that
Anchorp(Pi4, Pig) = {(n1,n2), (n6,n10)}.

\\*\\\'u

Figure II1.6: Illustration of the anchoring in data of a hooking

We can deduce how to compute the set of occurrences of P; @ P; from the set of occurrences of
P; and the set of occurrences of Pj:



Property 4 Let P, € PFA; and P, € PFA; be two hookable patterns. Let hn € Np, be such that
hn € hook_nodes(P;, P1). Let n € Locc(P; ®py P1, D). We have:

EMu(P; ®pn P1, D) = {piopr | pi € EMy(P;, D) and p1 € EM, (hnn)(P1, D)}
Hence:
Loce(P; ®py, P1, D) = {n € Locc(P;, D) | Im € Loce(Py, D) such that (n,m) € Anchorp,(P;, P1)}
Proof: Let P11 = P; ®py, Pi. Lets show that:

o EMn(Piy1, D) C{piopr | pi € EMn(Pi, D) and p1 € EM, (an)(P1, D)} : straightforward,
as P, C P71 and P, C P;11, we can decompose each mapping u; of Py in a mapping of P,
and a mapping of P;.

(] 8Mn(Pi_|_1,D) D) {Ni O 41 | MHi € gMn(]DZ,D) and H1 € 8M,u,-(hn)(P1aD)} : As P, and P,
are hookable by hn, then (n, u;(hn)) € Anchor(P;, P,). Hence p; o py is in EM,, (P11, D).

O

2.4 Algorithm

The algorithm that we will present in this section builds all the sets PF A; previously defined.
Our algorithm is described in algorithm 1. It takes as input a tree database BA and an a
frequency threshold ¢
The result of the algorithm is:

e a set of frequent patterns, which is the unions of sets ERj, ..., ERy. For all i € [1,k], ER; is
the set of frequent patterns resulting from successive hookings of 7 frequent patterns of depth
1 found by the algorithm.

e for all frequent pattern P discovered, the algorithm also provides Locc(P, D), and for all
n € Locc(P, D), the algorithm produces EM,, (P, D).

In the algorithms, to represent the set of occurrences of a frequent pattern P, we will use a
data structure grouping occurrences and mappings. For P, this structure is noted P.locc. We
have: P.loc = {Occy,...,Occy,}. The objects Oce; contains a root Occ;j.root which is a node
from D, and a set of mappings Occ;.mapings. We have

U Occ;.root = Loce(P, D)
]

and
Vi € [1,n] Occi.mappings = EMoce;.root(P, D)

The first step of the algorithm is to find the set FR;. The procedure FindPF A, is detailed
in algorithm 2. The principle is simple: for each label I we want to find all the depth 1 patterns
having a root with this label (main loop). Hence we create a matrix where every line (transaction)
corresponds to a node n of label [ in the data. The columns (items) correspond to the labels of
nodes that are descendant from n. Then we apply the ECLAT algorithm ([ZPOL97]) to this matrix.
This algorithm gives us the frequent sets of labels of nodes descending from a node of label [. So



we can, for this frequent label sets, create a frequent pattern of depth 1, which root label will be [
and which leaves label will be the frequent labels of the frequent label set (line 15).

Thanks to the tid-lists given by ECLAT, we can then easily find the nodes which are root
occurrences (line 18), and build the mappings between the frequent pattern of depth 1 found and
its instances in the data (line 19).

The discovery of set ER; is the starting point of our algorithm. Two important characteristics
must be noticed:

e The procedure FindPF A; uses a APRIORI-like algorithm. We have chosen ECLAT because
its vertical nature allows us to have the tid-lists that we need, while benefitting from a good
efficiency. Using a APRIORI-like algorithm allows us to access all the many improvements
made to this kind of algorithms, present and future.

e We can see here the effect of the restriction that we imposed on the frequent trees we discover.
We recall that this restriction is to find frequent patterns, these being labels trees where no
nodes can have two children with the same label. With this restriction, the APRIORI-like
algorithm used would have to be able to take as input a matrix of integer values (to handle
label duplications), and to find frequent itemsets with item duplications. To evaluate the
complexity increase, one can imagine the use of integer values in the matrix as a boolean
matrix with many more columns: the label [ would have as many columns as it can have
duplications. The APRIORI algorithm is exponential in the number of items. Hence any
increase in the number of columns induces a big efficiency loss.

Algorithm 1 DRYAL
Require: BA a tree database, € a threshold, L a set of labels
Ensure: |JER; set of resulting frequent patterns, and for each discovered frequent pattern P,
P.loc.
1: ER; < FindPF A, /] see algorithm 2

2: 141

3. while ERi 7é (2) do

4: ERZ‘+1 «— 0

5. for all P € ER; do

6: for all P, € ER; do

7 if hookable(P, P;) then

8: ER; 1 < ER;+1 U Hooking(P,Py) // see algorithm 3
9: end if

10: end for

11: end for

122 14 1+1

13: end while'

14: Return |J;_, ER;

From the discovery of the set ER; of frequent patterns of depth 1, the sets ER;1(z > 1) are
discovered iteratively by hooking at each step i the patterns of ER; and the patterns of FR;.
This is realised by the main algorithm in the double loop of lines 5 to 11. For each element pair
(P;, P1) € ER; x ER;y, we determine if they can be hooked, that is if P; has at least one leaf of
same label as the root of P;. If so, we use the hooking procedure described in algorithm 3.



Algorithm 2 FindPF A,

Require: BA a tree database, € a threshold, L a set of labels
Ensure: ER; the set of frequent patterns of depth 1, and for each frequent pattern P, P.loc
1: ER1 < @
2: for all label [ € L do
3: [/ Matriz building
M, < bidimensionnal matrix with [{n € Np|label(n) = [}| lines and |L| columns
for all n € Np tq label(n) =1 do
for all I’ € L do
if Im € Np tq ancestor(n,m) et label(m) = I' then
Ml[’l’b, ll] =1
end if
10: end for
11:  end for
12:  EEL <+ Eclat(M;,e) /| EEL is a set of label sets given by the algorithm
// ECLAT. Fach label set is associated to its tid-list.

13: /] Frequent pattern
14: for all EL € EEL do

15: Ppew < depth 1 pattern, root label = [, leaves labels = E L.itemset
16: P,ey.loc— 0
17: for all n € EL.tidList do
18: NewQcc.root =n
19: NewOcc.mappings = {u | u(root(Prey)) =n and
Vm € leaves(Preyw) label(m) = label(u(m)) and ancestor(n, u(m))}
20: Ppew-loc <+ Pyey.locU NewOcc
21: end for
22: FERi < ER{ U Py
23:  end for
24: end for

25: Return FR;




For each potential hook node n, the procedure ComputeLocAccr described in algorithm 4 checks
that there exists enough occurrences in the trees supporting the hooking on that node. If there is, a
new frequent pattern is created, resulting from the hooking of P; on P; by node n. The occurrences
of this new pattern are computed by keeping the roots of P; occurrences supporting the hooking
between P; and P; by n, and by composing the mappings associated to these roots for P; with the
mappings of corresponding occurences of P;.

Algorithm 3 Hooking

Require: P; and P; are hookable

Ensure: a set of frequent patterns of depth ¢ 4+ 1 resulting from the hooking of P; on P;
1: for all hn € hook_nodes(FP;, P1) do

2. (LOC, Anchorpy, (P;, P1)) < ComputeLocAccr(P;, Py, hn)
3. if |[LOC| > € then
4: /] The hooking on node hn is frequent: we process it
3: Prew < P, ©py P1
6: Py loc 0
7: for all (Occ;, Occr) € P;.loc x Py.loc st (Occj.root, Ocey.root) € Anchorp, (P;, P1) do
8: NewOcc.root < Occ;.root
9: NewOcc.mappings < 0
10: for all (u,u') € Occi-mappings x Occy.mappings st u(hn) = Ocey.root do
11: NewOcc.mappings < NewOcc.mappings U p o p'
12: end for
13: P ew-loc < Pyey.loc U NewOcc
14: end for
15: Result < Result U Pyeq
16: end if
17: end for

18: Return Result

2.5 DRYAL properties

THEOREM 1 The DRYAL algorithm is sound and complete, i.e. the set of patterns returned by
DRYAL for a tree database BA and a threshold € is exactly the set P of all the frequent patterns of
BA for the threshold e.

Proof: We will first show soundness, then we will show completeness.

Soundness:

Let’s show by induction on ¢ that all P € ER; are frequent, and that VP € ER; the stucture
P.loc represents the set of occurrences and mappings of P in the data.

e case 1 = 1: Given that the procedure Find PF A; is based on the ECLAT algorithm, that this
algorithm must find all the patterns of depth 1 having a root of a given label, and that ECLAT

is correct and complete, then for each label we are assured to have all the patterns of depth
1 whose root label is this label. Hence ER; = PF A;.

For each frequent pattern discovered Py, the data structure P,¢,.loc built at lines 17 to
19 of procedure Find PF A; regroups correctly the set of occurrences (line 18) and mappings
(line 19) of P,y in the data.



Algorithm 4 ComputeLocAccr
Require: P; and P; are hookable, hn € hook_nodes(P;, P;)
Ensure: LOC the set of occurrences in Np of P; ®p, P, and Anchorp,(P;, Py)
1: LOC « ()
2: Anchorpy,(P;, P1) < 0
3: for all Occ; € P;.loc do
OccM appingOK < FALSE
for all Occ; € P.loc do
if Ju € Occ;.mappings st p(hn) = Occy.root then
OccMappingOK < TRUE
Anchorp, (P;, P) < Anchorp, (P;, P1) U {(Occ;.root, Ocey .root) }
end if
10:  end for
11:  if OccMappingOK then
12: LOC <+ LOC U {Occ;.root}
13:  end if
14: end for
15: Return LOC and Anchorp,(P;, Py)

e case i + 1: Suppose the property is true for i, we will prove it is true for 7 + 1.

Let P' € ER;11. According to our algorithm, there exists P € ER; and P; € ER;, P and P,
hookable, such that P’ € Hookings(P, P;), moreover P and P are frequent by the induction
hypothesis.

Still according to our algorithm, there exists at least € occurrences of P and P, where the
hooking of these two in the data is frequent. So, by definition of a frequent tree, P’ is frequent.

Let’s prove now that Ugcce piocOcc.root = Loce(P', D), and Upeee piocOcc-mappings = EM(P', D).
Proof by negation: lets suppose that the previous property isn’t true

— 1st case: there exists an occurrence which isn’t discovered. But all occurrences of P’
come from occurrences of P, and by the induction hypothesis all the occurrences of P
are correctly discovered. So this case is impossible.

— 2nd case: for an occurrence r, there exists a mapping u € EM,.(P, D) that isn’t discov-
ered. We can restrict this mapping p on the nodes of P; to u;, and on the nodes of P;
to p1, with g = p; o pp. If p isn’t discovered, then u; and p; as well aren’t discovered.
This contradicts the induction hypothesis.

Completeness:
This proof comes in two steps:

e (i) We first prove that the union of the sets of frequent patterns PF A; gives all the frequent
patterns (i.e. any frequent pattern can be written as a series of hookings of frequent patterns
from PFA;).

e (ii) We then prove that Vi ER; = PFA; (recall that PF A; is the set of frequent patterns
resulting from the hooking of ¢ patterns of depth 1 from PF A;).



The point (i) is straightforward: any pattern can be written as a series of hookings of patterns
of depth 1. If the pattern is frequent, then all the depth 1 patterns composing it are also frequent,
so they are all in PF A;.

For the point (ii), the correction proved that Vi FER; C PFA;. We only have to prove the
converse.

By induction:

e Case i = 1: we have seen before that FRy = PF A;

e General case: suppose that for ¢ we have PFA; C ER;. Let’s show that this still holds for
1+ 1.
Let Pit1 € Ejy1 (i #0). There exists P; € PFA;, P € PF A, such that P11 = P, &, P,
with hn € Np,.

By induction hypothesis, P; € ER; and P, € ER;. They are hookable by hn so the algorithm
goes into procedure Hooking.

As P11 € PFA;44, it is frequent, so |LOC| > e.
Hence Py € ER;41.

3 DRyAL parameterising

The DRYAL algorithm can be easily modified to handle tree inclusion definitions other than the
strict weak inclusion used before. The following subsections show the modifications to do in order
to handle some other inclusion definitions.

3.1 DRYAL4

Preserving the ancestor relationship in the strict weak inclusion definition exponentially increases
the number of results to find. Hence the cost of the alorithm with this definition of weakness is
high.

We can easily restrict DRYAL to a more constrained inclusion definition, for example the strict
exact weak inclusion (definition 9 of chapter II, page 11), which only preserves parent relationship.

For this, the only changes to do are in the procedure FindPF' A;. The patterns of depth 1 must
be built only with the parent relationship. After, the hooking mechanism is the same.

The change in the procedure FindPF A; occurs at line 7: ancestor(n, m) must be replaced by
parent(n,m).

We will call the algorithm DRYAL parameterised this way DRYAL ;4.

3.2 DRYAL N

Considering the previous parameterising, one can want a compromise between the flexibility of the
inclusion definition used and the program performances.

Given an integer N, we can then choose an inclusion definition considering at most N an-
cestorship levels. For example, N = 1 corresponds to parent relationship, and N = 2 considers
parents and grandparents. Here again, the change is in line 7 of FindPF A;: ancestor(n,m) must
be replaced by ancestor<y(n,m), where ancestor<y considers all ancestor relations of at most N
levels.



3.3 DRYALinjective

We may also want to add another constraint on the inclusion definition that we use, namely
the injectivity constraint. The inclusion definitions used then are no longer ”weak” definitions,
according to definition 9 from chapter II.

The interest of considering inclusion definitions based on injective mappings is double:

e The given patterns will have exactly the same form as they have in the documents. Without
injectivity, we authorise some pattern forms that can go against the user’s intuition, as long
as inclusion definition is not exact (i.e. uses ancestor relationship).

In our example, let’s consider the frequent patterns from PF Ay shown in figure I11.5. With
a weak inclusion definition, and a threshold € = 2, the pattern P»4 is frequent. However, this
implies that for the occurrence of P4 of root n; in the data, the two nodes of P»4 of label D
are mapped onto the node n3 from data (see figure I11.2).

This is not necessarily very intuitive, and such a pattern wouldn’t be considered as frequent
with an inclusion definition taking into account injectivity.

e Taking mapping injectivity into account increases some costs in the program, but also allows to
reduce some other costs, by diminishing the number of duplicate frequent patterns generated.
Consider example of figure I11.7. We have on top of the figure a tree database, and we have
shown some frequent patterns of depth 1, for the threshold ¢ = 2. The frequency of pattern
P51, built by hooking of Pj5 on P;q, lies on the mapping of two nodes labelled by D of Py on
the same node of label D in the data. The fact that P»; have two nodes of label D will allow
the hooking on these two nodes of pattern P;3 and thus generate the two frequent patterns
P31 and Pss. Each of these patterns having to be considered in the further computations,
the cost overrun is important. If we impose mapping injectivity, it suppresses one of the
occurrences of a node of label D in P»1, hence only one hooking of P;3 is possible.

The duplicate nodes inside patterns come from the use of ancestrality relationship. For example,
in figure II1.8, we can see a tree database and all the associated frequent patterns of depth 1, for
e = 1 (we use here a the version of DRYAL using ancestrality relationship). If we hook pattern 9
on pattern 6, then pattern 11 on the resulting pattern, we obtain Pg, which is very close to the
data. But we can also hook pattern 9 on pattern 3. Then the node of label C' is duplicated: there
is one version coming from pattern 9 and correctly inserted at depth 2, and one (duplicate) version
coming from pattern 3 and which represents an ancestrality relation in the pattern.

In order for DRYAL to limit itself to do hookings satisfying the injectivity of corresponding
mappings, hookings producing duplicate nodes must be avoided.

For this, we introduce the function CheckInjectivity, described in algorithm 5. Given two
hookable patterns P; and P;, a hook node hn and the sets Anchorp,(P;, P1) and LOC computed
by ComputeLocAccr, this function returns the set NewLOC of the occurrences of LOC satisfying
injectivity constraint for the hooking F; @y, Pi.

The essence is the following: for each occurrence of P; where P; hooks on hn, we look for
a mapping of P; &, P in the data satisfying the injectivity constraint. As at this state of the
algorithm we don’t know the mappings of P; @y, P1, our analysis uses the mappings of P; and those
of P;. For a given leaf of P;, if in P; ®j,, P; this leaf only reflects an ancestrality relation between
it’s parent and a leaf coming from P; (injectivity constraint not satisfied), this comes in the data
to the equality between the set of nodes of D that can be reached by mapping from this leaf of P;,
and the set of nodes of D that can be reached by mapping from the corresponding leaf of P;.



Figure II1.7: P31 are P3» are duplicates
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Figure II1.8: A tree database and all the frequent patterns of depth 1 associated



Algorithm 5 CheckInjectiviy
Require: P; and P; hookable, hn a hook node, Anchory,(P;, P1) , LOC set of occurrences from
P; where P; hooks.

Ensure: NewLoc the list of occurrences fo LOC satisfying injectivity constraint.

1: NewLOC + 0

2: for all n; € LOC do

3:  AllLeavesOK «+ TRUE

4:  for all leaf f € Np, do

5 f' < leaf from P; having same label as f

6: ThisLeafOK < FALSE
7: for all y € EM,,,(P;, D) do
8
9

for all u' € EM,,, (P, D) with (n;,n1) € Anchorp,(P;, P1) do

: if 4/(f') C u(f) then
10: ThisLeafOK < TRUFE

11: end if
12: end for
13: end for

14: AllLeavesOK <+ AllLeavesOK AND ThisLeafOK
15:  end for

16: if AllLeavesOK then

17: NewLOC < NewLOC U {n;}

18:  end if

19: end for

20: Return NewLoc




Then the procedure Hooking (algorithm 3) must be modified to use CheckInjectivity.

We add line 3’: LOC < CheckInjectivity(P;, Py, hn, Anchory, (P;, P1), LOC).

This line ensures that only the hookings satisfying the injectivity condition for at least ¢ of their
occurrences will be performed.

4 DRYADE

4.1 Motivations

The previous algorithm, DRYAL, doesn’t make the most of the fact that if a pattern P is frequent,
then necessarily all the patterns included in A will be frequent (as shown by figure II1.9). Why
then consume computing time to generate all the frequent patterns included in P 7

Figure II1.9: If the pattern on the left is frequent, then all the patterns on the right are also frequent

This flaw is common to many algorithms discovering frequent structures or itemsets. It is
particularly important in our problem, because the inclusion definition based upon an ancestrality
relationship exponentially increases the number of frequent patterns that we can find in the data.

In the classical case of transactionnal databases, there exists an efficient solution to skip many re-
dundancies existing in the results. This solution in to compute closed frequent itemsets ([PBTL99],
[PHMO00], [ZH02]).

Hence we will modify our algorithm to no longer compute frequent patterns, but closed frequent
patterns, which we will define formally in next section. This solution has also been applied for the
discovery of frequent trees in [CYXMO04]|. However, their system consider the more constrained
inclusion definition of strict exact inclusion, preserving the parent relationship, and CMTreeMiner
discovers closed identifier-frequent trees. This comes with a different closure definition, based on
identifiers and not on occurrences.



In the rest of this chapter, we use the injective inclusion definition, only preserving ancestor
relationship. We have presented in the previous section the algorithm DRYAL;yjective, computing
the set of all frequent patterns corresponding to this inclusion definition, as well as the interest
of using this definition. In this section, we present DRYADE, which computes the set of closed
frequent patterns corresponding to this definition.

4.2 New definitions

We define formally the notion of closed set of frequent patterns. The intuition behind our definition
is that for a frequent pattern P’ to be closed, it’s occurrences in the datatree mustn’t be the same
as it’s occurrences in the projected of a pattern P in which it is included. In fact in this case the
pattern P’ would be redundant with respect to P: it is included in P and has no occurrence in the
data other than those coming from its inclusion in P.

Definition 19 (Closed set of frequent patterns) Let F be a set of frequent patterns with thresh-
old e. We say that E is closed if for all frequent pattern P € E, there is no frequent pattern P' € E
such that:

i. PPCP
ii. Locc(P', D) = Locc(P', projected(P, D))

Notation: By extension, we say of a frequent pattern from a closed set of frequent patterns
that it’s a closed frequent pattern.

Example: For our example datatree Dx (figure I11.2), let’s consider PF A; the set of frequent
patterns of depth 1. The figure III.10 shows the set of occurrences of these patterns, and the set
Closed(PF A;) that we can deduce.

PFA,

Locc = {n1,n6} Loce = {n2,n10}

Closed(PF Ay)

Figure I11.10: For Dy, PF A; and Closed(PF A)

As we can see, because of condition i, when a frequent pattern is included into another one it
is often eliminated from the closed set.



We only keep a frequent pattern P’ included in a frequent pattern P when the condition ii isn’t
satisfied. This case is shown in figure I11.11: the frequent pattern P, is included in the frequent
pattern Pj, but it is closed because it’s occurrence ny doesn’t appear in the projected of P; in the
data, which is the tree of root ey without the subtree of root no.

Closed frequent patterns of depth 1 :

Loce = {n,}

Loce = {ny,na}

Loce = {n3}

Figure III.11: ¢ =1

Definition 20 (Closure of a frequent pattern set) Let E be a set of frequent patterns. We
call Closed(E) the biggest set (according to set inclusion) included in E such that Closed(E) is a
closed set of frequent patterns.

From now on, we no longer seek the set of all frequent patterns P, but the biggest closed set
of frequent patterns included in this set, i.e. we are looking for Closed(P). We will sometimes call
target patterns the patterns in Closed(P).

An “easy” solution to find Closed(P) is to compute P, then to deduce Closed(P). This solution
is counterproductive: the very long computation time needed for the discovery of P must be paid,
then an additional time must be paid to keep only closed patterns.

The main idea of optimisation by closed patterns is to avoid all duplicate computations. So we
will directly compute Closed(P). For this, we will continue to apply our hooking strategy, but with
much smaller frequent pattern sets. It means that we will impose that the set of frequent patterns
handled by the algorithm is always a closed set.



To illustrate the benefit of this method, let’s consider the example of figure I11.12.

Closed(Py) P,

Closed(P)
Figure I11.12: Comparison of Closed(P;) and P

For the tree database on top of this figure, we have shown on the right the set P; of frequent
patterns of depth 1 it contains, and on the left the set Closed(P;). All the patterns are numbered
in the figure.

On the left, the number of possible hookings is very limited:

e P, and P3 are hookable on P;

e P43 is hookable on P,

To hook only depth 1 patterns on patterns of any depth, we can only hook P, on Py, then P;
on P, @ P,. We thus generate a minimal number of frequent patterns. However, to get the unique
pattern in Closed(P), we have to suppress, from the frequent patterns produced, some “excess”
leaves that do not satisfy the injectivity constraint (see figure I11.13)



Figure II1.13: Pattern produced by hooking of P, on P; then P3 on P, @ P».

On the other hand, on the right in figure II11.12, many hookings can be done:
e Pi5 can hook on Ps

e P4 can hook on P

e Pg, P19, P13 can hook on Py

e P4 can hook on Pig and P9

For all potential hookings, frequent patterns will be produced. These frequent patterns are
correct, but are all included in the unique pattern of Closed(P), which simply results from the
hooking of P, on Py, then of P4 on the previous pattern. Hence generating all of them is useless.

We can see that as the closed set of frequent patterns of depth 1 is very small, it saves us
from having to generate “useless” patterns, and so avoids duplicate computations. This can be
generalised to the closed sets of frequent patterns of any depth.

However, the hookings on closed frequent patterns induce a non-trivial problem to respect
injectivity constraint. For a better understanding of this problem and it’s origin, and of the way
we will solve it, the following section gives detailed explanations about the closed set of frequent
patterns of depth 1.

4.2.1 Closed set of frequent patterns of depth 1

Let’s consider again the example of figure II1.12. Let P be the unique pattern in Closed(P).

More specifically, let’s focus on the frequent patterns of P; whose root has label A. These are
the frequent patterns Py, Ps, P, Pr, Py, Pip and P;1. All these patterns have the same occurrence
set. The patterns Ps, Ps, P;, Py, Pip and P;;1 represent all the possible ways to take away one then
two nodes from the pattern P;. So they are redundant, because from pattern Py it’s very easy to
find them.

As expected, the only pattern whose root has label A in Closed(P;) is pattern P;, which
corresponds to pattern P, from P;.

The leaves of this pattern correspond to all the ancestor relationships between the
root of Po and the other nodes in FPg.

Understanding this is very important to understand the DRYADE algorithm. We can formalise
it as follows:



Definition 21 (Flattening) Let P be a pattern. We call flattening of P, noted flat(P), the
unique pattern of depth 1 such that there exists a surjective mapping u between the nodes of P and
the nodes of flat(P) verifying:

e u(root(P)) = root(flat(P))
e Vn € Np label(n) = label(u(n))

e Vn € Np such that ancestor(root(P),n) : parent(root(flat(P)),u(n))

Property 5 For all frequent pattern P € Closed(P), flat(P) € Closed(P;)

Proof: By definition of frequent patterns of depth 1, the pattern flat(P) exists in Py: it’s the
pattern of depth 1 made with the root of P and having as leaves exactly all the labels of the nodes
of P, without duplicates. This pattern is in Closed(P) because all the patterns with the same root,
the same occurrences set, but less nodes will be eliminated by flat(P) when computing closure.
On the other hand flat(P) cannot be eliminated, because it is maximal for pattern inclusion. [

The reason why satisfying injectivity constraint is difficult can be understood thanks to property
5. Given that a frequent pattern of depth 1 contains all ancestrality relations of the target patterns
it allows to build, when another frequent pattern of depth 1 is hooked on it, the relations with the
nodes of this other pattern are found twice: in the nodes of the hooked pattern and in the nodes
of the pattern supporting the hooking.

We already encountered this problem in section 3.3. To solve it, we detected illegal hookings
from the point of view of injectivity constraint, in order to avoid them.

But here we cannot do that: we have seen that the frequent patterns of depth 1 that we have
always lead to a non-satisfaction of injectivity constraint in the hookings.

So we must perform hooking, and then eliminate redundant leaves in the produced frequent
pattern, in order to have closed frequent patterns.

The redundant leaves are defined as follows:

Definition 22 (Redundant leaf) Let P; and P; be two closed hookable frequent patterns, and let
hn € hook_nodes(P;, P1). Let P;y1 = P; ®py, Py.

We say that a leaf F of P11, coming from P;, is redundant if for all occurrence o € Locc(Pi11, D)
and for all mapping p € EMo(Piy1, D), we have u(F) = u(Fy), where Fy is the leaf of Piy1 coming
from Py having the same label as F.

From the previous definition, we deduce that to obtain closed frequent patterns from the hooking
of two closed frequent patterns, we must first perform the hooking of the closed frequent patterns,
and then suppress the redundant leaves in the resulting pattern, the leaves to suppress varying
according to occurrences.

For example in figure II1.13, the leaves to suppress are enclosed in the dotted line.

4.3 Essence of the algorithm

4.3.1 General essence

The idea on which DRYADE is based is to create the closed set of all frequent patterns, starting
with the closed set of all frequent patterns of depth 1 (Closed(P;)), then to compute by successive
hookings the closed frequent patterns of higher depth.



As soon as we obtain Closed(P;), we have a very basic approximation of the final result,
Closed(P). Actually, in the patterns of Closed(P;) are the flattenings of the patterns of Closed(P).
The structural informations will be progressively earned by hooking patterns of depth 1, and
suppression of redundant leaves.

4.3.2 Differences from the essence of DRYAL

As we are looking for a closed set of frequent patterns, the hooking strategy that we used in DRYAL
will have to be changed in DRYADE, for three reasons:

Leaves suppression: Each hooking done will have to be followed by a step of redundant leaves
suppression, to obtain closed frequent patterns. We will describe later how this step is performed.

Multiple hookings: In DRYAL, we were hooking patterns of depth 1 one by one. This is no
longer possible for computing closed patterns. For example, lets consider the new example datatree
Dy, shown in figure II1.14. For a threshold € = 2, we have represented on the figure I11.15 the set
Fi1 = Closed(Py).

If we apply the strategy of DRYAL, hooking patterns of depth 1 one by one, we have the hookings
of figure IT1.16.

Figure II1.14: Dy

Two problems may arise. The first one is that we generate twice the pattern P,. This is
unefficent. The second problem is even worse: we generate the patterns Po, and Py, which do not
satisfy the closure condition (both are strictly included in pattern P,, with the same occurrences
set).

To solve efficiently this problem, we will have to, for a frequent pattern P, hook on it si-
multaneously several frequent patterns of depth 1. In the case of figure I11.16, we have to hook



Py Py Py Py
Loce = {ny,ng} Loce = {na,n16} Loce = {nz,n1}  Locec = {nz,nis, nao}

Figure II1.15: For € = 2, closed set of frequent patterns of depth 1 of Dy

simultaneously P12 and Pi3 on Pij.

Hookings order: The satisfaction of closure condition imposes a third difference with DRYAL.
Let’s come once again to the example of figure I11.12. We could hook P» to Py, and also P to P
in order to make another pattern. On P; @ P,, we could then hook P;. After the suppression of
the redundant leaves, we would have two patterns, the pattern from Closure(P) (P, & P,) ® Ps :
A — B —C — D, and also the patern P, @ P; : B — C — D. This last pattern is frequent but not
closed.

To avoid this kind of problems, we have to respect a certain order to hook the patterns, with
the rule of retarding as far as possible the hookings, while they are still possible.

At each DRYADE iteration, the patterns on which we must hook other patterns will be called
root patterns. To define them, we make explicit the hooking graph structure existing between the
patterns, which allows a “stratification” between patterns to appear.

Definition 23 (Hooking graph) Let EP be a set of patterns. We call hooking graph the la-
belled directed graph Gep = (EP,A) such that:

o the set of nodes of the graph is EP

e there exists an arc from Py to P, (i.e. (P, Py) € A) if Anchor (P, Py) # 0.
In this case, the arc (P, P3) is labelled by the set Anchor(Py, P1).

Example: With the datatree Dy, the hooking graph of closed frequent patterns of F; (figure
II1.15) is shown on figure II1.17.

Definition 24 (Predecessor and successor) Let EP be a set of patterns. Let Gpp = (EP, A)
be the hooking graph of EP. For all patitern P € EP, we note:

e pred(P) ={P' | (P',P) € A}, these are the patterns hooking on P.

e succ(P) ={P' | (P,P') € A}, these are the patterns on which P hooks.

Definition 25 (Cycle equivalence class) Let EP be a set of patterns, and Ggp the correspond-
ing hooking graph. The cycle equivalence classes of EP are the equivalence classes of the
equivalence relation =, defined on the nodes of Ggp by:

N1 = Ny iff there exists a cycle in Ggp going through N1 and No.

The set of cycle equivalence classes of EP is noted CE(EP).

Definition 26 (Hookings quotient graph) Let EP be a set of patterns. We call hookings
quotient graph of EP, noted GQgp = (CE(EP), A'), the graph satisfying:



Suppression of Suppression of
redundant leaves redundant leaves

Suppression of Suppression of
redundant leaves redundant leaves

Figure I11.16: Hookings with the DRYAL strategy
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{(hn1D2: N2, N3 )5
(hn}jz, n16, nlS):
(hn}% n16, n20)}

Figure II1.17: The hooking graph of F; (F; is shown on figure I11.15)



e the set of nodes of the graph is CE(EP).

e there exists an arc between two nodes CEy and CEs of CE(EP) if and only if there exists an
arc in Gpp between a pattern element of CEy and a pattern element of C'Es.

Property 6 For a set of patterns EP, it’s hookings quotient graph is a directed acyclic graph.
Hence there exists nodes in GOgrp that have no father, and which will be called the roots of the
hookings quotient graph.

Definition 27 (Root pattern) Let EP be a set of patterns, let GOgp be its hookings quotient
graph. A root pattern of EP is a pattern that:

e belongs to a root equivalence class of the hookings quotient graph.
o has at least € root occurrences in the data.
The set of root occurrences of a pattern P € EP is the set OR(P) defined by:

RO(P) = {o € Locc(P,D) | VP' € succ(P) Ao € Locc(P', D) st (o',0) € Anchor(P', P)}

Remark 3 If the hooking graph of a set of patterns hasn’t any cycle, then the root patterns are the
root nodes of the hooking graph.

4.3.3 Pseudo-code and details of the algorithm DRYADE

DRYADE is shown in algorithm 6. The notations used are summed up in table I11.2.

Fb Closed set of frequent patterns being computed at iteration ¢
g Hooking graph F},
RPS Set of root patterns of Fp,
IHCS Set of immediate hooking contexts on a root pattern

NewPatternsInfos New frequent patterns of depth 72+ 1 and
the patterns they come from by hooking.

Table II1.2: Notations for algorithm DRYADE

In the following paragraphs, we will explain thoroughly how DRYADE works.

Computing Closed(P;) and G

We have seen in algorithm 2 (Find PF A1) a method to determine the set P; of the frequent patterns
of depth 1. For this algorithm to compute Closed(P;), only a minor modification is necessary. To
compute the set of sets of frequent leaves of depth 1, Find PF A uses an exhaustive APRIORI-like
algorithm, namely ECLAT. As summed up in table II1.3, the transactions are all the node n of data
of label [, for a given [, and the items are all the labels of the nodes descendant of n. In the DRYADE
framework, we are interested in the closed set of sets of leaves of depth 1. So ECLAT must be
replaced by an algorithm computing closed frequent itemsets. To have an easy access to tid-lists,
the new algorithm must be vertical: the CHARM algorithm [ZH02] hence is a good solution.

Property 7 Let F}, be the result of algorithm FindPFA; where ECLAT is replaced by CHARM.
Then F}, = Closed(P1).



Algorithm 6 DRYADE
1: Compute F}, = Closed(P1)
2: G + ComputeGraph(F}) |/ See algorithm 7
3: Continue < TRUFE
4: 11
5: while Continue do

6: NewPatternsInfos < ()

7. Continue < FALSE

8:  RPS < GiveRoots(G) |/ See algorithm 8

9: ng — .7:ZD

10: for all RP € RPS do

11: IHCS « PatternsToHook(RP) /] See algorithm 10

12: if THCS # () then

13: Continue < TRUE

14: end if

15: (NewP, NewPInfos) < HookingSuppr(RP,IHCS) /] See algorithm 1/
16: Fift « Ft U NewP

17: NewPatternsInfos « NewPatternsInfos U NewPInfos

18:  end for

19: Update(.’/—'gl, G, NewPatternsInfos) /| See algorithm 16
200 141+1

21: end while

22: Return F}

Transactions ‘ Items
nodes n of BA of label [ ‘ labels of nodes descendant of n

Table II1.3: Frequent Item Sets for the detection of frequent patterns of depth 1 whose root is
labelled by [, for a tree database B.A



Preuve: We have seen in the previous section that Find PF A; computes correctly P; with the
algorithm ECLAT. The closure property of Closed(P:1) depends on the inclusion between elements
of P1. There cannot be any inclusion between two patterns of P; of different roots. A pattern of
P; having same root as another pattern of P; will be included into it (by tree inclusion) if their
sets of leaves are included by set inclusion. Hence in F; = Closed(P;) the sets of leaves are closed
for the patterns having the same root labels.

And for a root of a given label, the sets of leaves are the results of the algorithms ECLAT
or CHARM. As the algorithm CHARM produces closed sets of leaves, we deduce that we have
F1 = Closed(P;) as an output of FindPF A; where ECLAT has been replaced by CHARM. O

We get a set F1, = Closed(P;). By then we already know the nodes of the hooking graph of
.7-'}): these are the patterns of .7-'11). To find the arcs of the graph and their correct labels, it is
necessary for all couples (P1, P») € F}, x F}, of hookable patterns to compute Anchor(P;, P;). An
implementation of this computation is given in the procedure ComputeGraph, shown in algorithm
7.

Algorithm 7 ComputeGraph

Require: .7-'}, a closed set of frequent patterns of depth 1
Ensure: G the hooking graph of F7},

A0

2: for all P, € .7-"11) do

3: forall P, € F}, do

4: if hookable(P;, P;) then

5: Anchor Arc <

6: {hn} < hook_nodes(P1, P2) /] only one hook node because depth 1 patterns
7: for all occ; € P;.loc do

8: for all occy, € Py.loc do

9: if Ju € occi.mappings st p(hn) = occe.root then

10: AnchorArc <— Anchor Arc U {(hn, occy .root, occy.root) }
11: end if

12: end for

13: end for

14: A — AU{(Py, P;) of label AnchorArc}

15: end if

16: end for

17: end for

18: Return G = (F, A)

Root patterns

The first step of a DRYADE iteration is to find the root patterns of Fp. This is done in the procedure
GiveRoots, shown in algorithm 8.

Property 8 From a closed set of frequent patterns Fp and its hooking graph (Fp, A), the procedure
GiveRoots computes the set RPS of pairs (RP, RO) such that the union of all RP is the set of
root patterns in Fp, and for all pairs (RP,RO) € EPR, RO is ezxactly the set of root occurrences
of RP.



Algorithm 8 GiveRoots
Require: The hooking graph G = (F%, A), for a given iteration i
Ensure: The set RPS of all the pairs (RP, RO) where RP is a root pattern and RO are its root
occurrences.
1: RP Stmp — @
2: for all P € ‘7-"% do
33 RO « Ploc

4:  for all P' € succ(P) do

5: for all (¢',0) € Anchor(P', P) do

6: /] Anchor(P', P) is the label of arc (P', P) computed by the procedure ComputeGraph
7 RO + RO —o

8: end for

9: end for

10:  if | RO | > € then

11: RPSymp < RPSymp U{(P,RO)}

12:  end if

13: end for

14: // We are looking for the root equivalence classes of the hookings quotient graph
15: RPS « ()

16: for all (P, RO) € RP S}y, do

17:  if P.loc = RO then

18: /] Equivalence class reduced to a singleton and root in the quotient graph

19: RPS + RPSU (P, RO)

20: else

21: /] We determine if equivalence class of P is a root cycle in the quotient graph.
22: if isInRootCycle(P, RO,G) then

23: RPS <+ RPS U (P,RO)

24: end if

25:  end if

26: end for

27: Return RPS

Algorithm 9 isInRootCycle

Require: A pattern P, it’s root occurrences RO, the hooking graph G = (F%, A)

Ensure: Returns TRUE if P is in a root cycle of the quotient graph associated to G, and FALSE
otherwise.
// The algorithm of this function isn’t given here. It is based on a classical cycle detection algorithm,
enhenced to find the root cycles of the quotient graph associated to G.




Proof: The algorithm iterates on all the patterns P of Fp, so all potential root patterns are
analyzed.

Let’s show first that the root occurrences of patterns are correctly computed: We
see at line 7 that to compute the root occurences of a pattern P, we remove from the set of the
occurrences of P all the occurrences that do not satisfy the condition given in definition 27. At the
end of the loop the set RO which as then been found is RO(P). The condition on line 10 ensures
that only the root patterns verifying | RO(P) | > ¢ can be detected as root patterns.

Let’s show now that the patterns resulting from GiveRoots are the patterns of the
root equivalences classes from the hookings quotient graph: The are two kinds of root
equivalences classes in the hookings quotient graph:

e First case, an equivalence class that does not correspond to a cycle. Hence this equivalence
class contains only one pattern P. In the hookings quotient graph, this class has no father,
it means that the pattern P doesn’t hook on any other pattern, for any of it’s occurrences.
Hence Locc(P, D) = RO(P). This case is detected by line 17 of the procedure GiveRoots.

e Second case, the equivalence class corresponds to a cycle, containing several patterns P, ..., P, (n >
1). As this class is root for the hookings quotient graph, it has no father. This means that
the patterns P4, ..., P, doesn’t hook on any pattern other than a pattern from the cycle. This
is detected by the function isInRootCycle. In order to avoid overloading this chapter we
haven’t given it’s code.

O

Patterns to hook under root patterns

For the rest, we suppose that we are at iteration 7 > 1 of DRYADE.

When iteration ¢ starts, we have the result of previous iteration f;)_l, and after the execution
of GiveRoots we have RPS the set of root patterns in .7-"51. For each root pattern of RPS, the
algorithm must discover the patterns of depth 1 to hook simultaneously on this pattern, and the
occurrences for which this multiple hooking happens.

For this, we first extend the notion of hooking anchored in the data. Until now, we had restricted
our hook anchor definition to the hooking of a frequent pattern of depth 1 on a frequent pattern
having any depth. We now give the definition of the anchor for the simultaneous hooking of several
patterns of depth 1 on a root pattern of any depth.

Definition 28 (Extension of anchor definition) Let .7:"15 be a closed set of frequent patterns,
and RP a root pattern in Ft. Let RO be the set of root occurrences of RP.

Let PS; = {(hn1, P1), ..., (hn,, P,)} C Ngp x Fi be a set of pairs, each pair having an hook
node on RP and a depth 1 pattern hooking on RP by this node.

The anchor of the set of pairs PS1 on RP is defined by:

Anchor(RP,PS1) = {(ogr,01,..,0n) | or € RO,01 € Locc(Py,D),...,0n, € Locc(P,,D) st
(or,01) € Anchorp,, (RP, Py) A ... A (oRr, 0,,) € Anchoryy, (RP, P,)}.

We can thus define the notion of multiple hooking set, i.e. all the patterns of depth 1 that
hook on a root pattern, with their anchors and hooking occurrences.

Definition 29 (Multiple hooking set and occurrence) Let F% be a closed set of frequent pat-
terns, and RP a root pattern of F},. Let RO be the root occurrences of RP.



Let PSy = {(hn1, P1), ..., (hnn, Pn)} C Ngp X F% be a set of pairs hook node on RP / frequent
pattern of depth 1 hooking on RP by this node.
We note MHOS(PS1) the set of multiple hooking occurrences of PS1 defined by:

MHOS(PS:1) ={o € RO | 3o,01,...,0n) € Anchor(RP, PS1)}

PS; is a multiple hooking set iff:

e | MHOS(PS,)|>¢
e there are no pairs (hn;, P;) and (hny, P) in PS; satisfying hnj = hny and P; C Py

Definition 30 (Closed set of multiple hooking sets) For a root pattern RP, the set M HS(PR)
is the closed set of all the multiple hooking sets on RP, i.e. it’s the biggest set (according to set
inclusion) of multiple hooking sets on RP such that: for all set PS; € MHS(RP), there is no set
PS| € MHS(RP) such that:

. PS{ Cc PS5
e MHOS(PS}) = MHOS(PS,)

Let’s consider a root pattern RP, and a multiple hooking set PS; € M HS(RP). In order to
select the patterns from PS; corresponding to the depth level to build at iteration i, DRYADE looks
for the patterns that are root patterns inside PS; (i.e. we perform a new “stratification” of the
patterns, limited here to the patterns of PSy).

Definition 31 (Immediate multiple hooking set) Let RP be a root pattern, and PS; € MHS(RP)
be a multiple hooking set of RP.

The set PS1g = {(hn!, P]),...,(hnl,, P! )} C PS; is an immediate multiple hooking set if
each pattern P in PSig is a root pattern of the set of patterns of PS;.

The immediate hooking anchor of PSig is the set IHAS(PS1r) C Anchor(RP, PS1r) such
that: ¥(og,01,...,0m) € IHAS(PS1r) and Vo; € {01, ...,0m} 0; is a root occurrence for P, when it
is hooked by node hn),.

The set of tmmediate hooking occurrences of PSir is the set IHOS(PSigr) = {0 €
IHOS(PSy) | 3(o,01,...,0m) € IHAS}, with |THOS| > ¢

Notation : In the algorithms, we will call immediate hooking context the triple
(PSig, IHAS(PS1r),[HOS(PS1R)).

For each root pattern RP, DRYADE computes the closed set of all its immediate multiple hooking
sets.

Definition 32 (Closed set of immediate multiple hooking sets) Let RP be a root pattern
Of FD .

The closed set of all the immediate multiple hooking sets on RP, noted IHCS(RP), is the
biggest set (according to set inclusion) of immediate multiple hooking sets on RP such that for all
set PS; € IHCS(RP), there is no set PSy € IHCS(RP) satisfying:

e PS; C PSi
e THOS(PS!) = IHOS(PS;)



Example: Let’s consider the datatree Dy. By analysing it’s hooking graph, figure I11.17, we
can deduce that Pj; is the only root pattern, and the candidates for hooking on P;; are the patterns
Py5, P13 and Piy.

In fact, the closed set of multiple hooking sets on P;; contains only one element: the set
PSy = {(hn}, Ppa), (hn}, Pi3), (hn}}, P1y)}, for the occurrences M HOS(PS;) = {ny,ns}.

Inside PS1, the root patterns are P and Pi3 (to find them, one only has to look at the graph
in figure I11.17, and hide P;1). We then get the only immediate hooking context:

THC = ({(hnyg, Pr2), (hng, P13)}, {(n1,n2,m5), (ng, n16,n10) }, {n1,18})

The set THCS(P11) is then reduced to the singleton {IHC'}.

For a root pattern RP, whose set of root occurrences is RO, the procedure PatternsToH ook,
shown in algorithm 10, computes THCS(RP).

We will now explain how PatternsToH ook works, with an example. For this, let’s consider the
datatree Dz shown in figure II1.18. The frequency threshold is set to ¢ = 1. The closed set F;
of the frequent patterns of depth 1 is represented on figure I11.19. The hooking graph for these
patterns is shown in figure I11.20. Obviously, the only root pattern is Pi;, whose root occurrences
set is RO = {n1,ng}.

€o
A | m A | ng
B | ng B | ns B | ng
C | n3 D | ng C | ni
D | ng C | ny D | nn

Figure I11.18: Dy

The procedure PatternsToH ook starts by building a transaction matrix M for the patterns
hookable on P;1, see table II1.4.

Transaction identifiers(occurrences) | (hng,Pi2) (hng,Pi3) (hnp, Pu)

ny {n2,ns} {n3} {ne}
ng {ng} {n1o}

Table II1.4: Transaction matrix M of the patterns to hook on P;;

This matrix contains for each occurrence o € RO and each pattern Px hookable on P;; by hook
node hn all the occurrences o of Px such that (0,0') € Anchorp, (P11, Px). The attributes are not
binary: so we apply CHARM to boolean(M), which is a transformtion of M into binary attributes.
The transformation rule is simple: an empty cell receives 0, a non-empty cell receives 1.



Algorithm 10 PatternsToH ook

Require: A root pattern RP, its root occurrences set RO, F% the frequent patterns
Ensure: THCS(RP) all the immediate hooking contexts on RP.

1:

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:

IHCS + 0

2 MHS « ()
3:
4: Create the thansaction matrix M with transactions = occurrences in RO, items = patterns

/] Compute all multiple hooking sets

of depth 1 in .7-"}) hookable on RP (for a pattern, as many items as hook nodes). We have:
Mo € RO, P, on hn € hook_nodes(RP, P1)] = set of nodes of P; that hook on occurrence o of
RP.
MHS <~ CHARM (boolean(M),e)
M’ + empty matrix
for all (PS,, MHOS(PS;)) € MHS do
for all (hn,P) € EP, do
/] Inclusion test on depth 1 patterns, so can be performed easily
if 3(hn', P') € PS; st hn = hn' AND P C P’ then
PSl — PSl — {(hn,P)}
end if
end for
for all occRP € MHOS(PS;) do
AnchorTransactions <— All Anchors(occRP, M,0) // See algorithm 11
AnchorTransactions < RootInAnchor(AnchorTransactions,occRP, RP,PS1) /] See al-
gorithm 12
Add AnchorTransactions to M’
transacMapping(occRP) < all the transaction identifiers in AnchorTransactions
end for
end for
Suppress from M’ duplicate transactions (same root patterns, same anchors for these root
patterns)
PSir + CHARM (boolean(M'),¢)
IHCS < ImmediateContexts(PS1g,transacMapping) // See algorithm 13
// Guarantee closure on occurrences
for all THC = (PS1,IHAS,THOS) € IHCS do
if ATHC' = (PS],IHAS',IHOS'") € IHCS tq PS; C PS| et IHOS = IHOS' then
IHCS + IHCS \ IHC
end if
end for
Return IHCS




Algorithm 11 AllAnchors
Require: M a transaction matrix, occRP the identifier of a transaction in M, col a column index
in M
Ensure: All the transactions of anchors corresponding to occPR in M, from column col.
1: Result +
2: if col < number of columns in M then
3: /] Get all combinations that can be built from items in the next columns

4. tmpTrans < All Anchors(occRP, M, col + 1)
5. if tmpTrans # () then

6: if M[occRP][col] # 0 then

7 for all occurrence o € M[occRP][col] do
8: for all transac € tmpTrans do

9: /] For each combination of next columns, add current occurrence of column col
10: Result <+ Result U {{o} U transac}
11: end for

12: end for

13: else

14: Result < tmpTrans

15: end if

16: else

17: Result < M[occRP][col]

18: end if

19: end if

20: Return Result

Algorithm 12 RootInAnchor
Require: AnchorTransactions a set of transactions, occRP the occurrence of RP to which these
transactions correspond, RP a root pattern, PS; a multiple hooking set on RP
Ensure: The transactions of AnchorTransactions where for each transaction (so for each anchor)
we only keep the patterns that are root for that anchor.
: for all T € AnchorTransactions do
for all itemP; € T do
if JitemP| € T st (itemP],itemP;) € Anchor(Pj,P;) then
T+ T —itemP
end if
end for
end for
: Return AnchorTransactions

® N DTy




Algorithm 13 I'mmediateContexts

Require: a set FISS of frequent itemsets (PSi,tidlist), where tidlst is a list of anchors,

transacM apping maps each occurrence of RP to its anchor (here we’ll use transacMapping™?),
MI

Ensure: Returns the immediate hooking contexts on RP

1:
2:
3:

© ®

10:
11:
12:
13:

CS « 0
for all (PS; = {(hny, P1), ..., (hn,, P,)}, tidlist) € FISS do
Anchor <
TID_occRP < ()
for all id € tidlist do
TID_occRP + TID_occRP U {transacMapping='(id)} // union WITHOUT duplicates
Anchor < Anchor U {(transacMapping *(id), M'[id, (hni, P1)], ..., M'[id, (hn,, P,)])}
// idem
end for
if |TID_occRP| > ¢ then
CS < CSU{(PS1, Anchor,TID_occRP)}
end if
end for
Return CS

PH A Plg B P13 C P14 D
B C D C D D C
hn}Y hnd hn} hnE  hnl?
n n n n
Loccs : ! 2 3 6
ng ns n10
g

Figure II1.19: Closed frequent patterns of depth 1 of Dy



Figure II1.20: Hooking graph of the closed frequent patterns of depth 1 of Dy

We then get closed frequent itemsets which are multiple hooking sets on P;1, as well as their
tidlists, which are the occurrences of the root pattern where the depth 1 patterns hook. Here, the
frequent itemsets are:

o PSII = {(hn}gl, P12), (h’nlcl, P13), (h’nlDl, P14)}, tidlistl = {nl}
[ ] PS% = {(hnlBl,Plg), (h’nlcl,Plg)}, tidliStQ = {nl,ng}

The next step of the algorithm consists in determining, among the multiple hooking sets dis-
covered, the immediate multiple hooking sets, hence the immediate hooking contexts.

For this, we must use the anchors of the sets of frequent patterns.

Let’s consider the first frequent itemset, PST = {(hnk, Pi2), (hng, Pi3), (hnly, Pia)}, tidlist' =
{n1}. By checking M, we can see that Pi» hooked by hn} has two possible occurrences. So there
are two possible anchors, it’s the goal of the recursive procedure All Anchors to make them explicit.
From a transaction of M, whose each item can be a set of occurrences, this procedure builds all
the possible transactions, with only one occurrence by item. This is equivalent to building all the
combinations of occurrences, by choosing one occurrence in each set of occurrences in an item. The
new transactions are shown in the table III.5.

Transaction identifiers (anchors) | (hny, Pi2) (hnl,Pi3) (hnh,Pis)

n% ng ns Ng
n% ns5 ns g

Table II1.5: AnchorTransactions

Then, the procedure RootInAnchor computes for each transaction, therefore for each anchor,
the patterns that are root for this anchor. The occurrences of these patterns do not hook on the
occurrences of the other patterns in the anchor. The modified transactions are given in the table
IT1.6.

These transactions are added to the matrix M’. Let’s note that going from the “occurrences”
granularity level to the “anchor” granularity level was unavoidable: what was regrouped in M at
occurrence n; has been separed in M’ in two different transactions.



Transaction identifiers (anchors) | (hn}, Pi2)

(h'nlcla P13)

(hn})l, P14)

1

ni n2 g
n% n5

Table II1.6: AnchorTransactions after RootInAnchors

The same operations on the frequent itemset PS?

{n1,mng} give the matrix M’ of table IIL.7.

Transaction identifiers (anchors) | (hnj , Pi2)

(hnlcla P13)

{(hn%, P12), (hnlcl, Plg)}, tidliStQ =

(hnlDl, P14)

’I’L% ng g
n% 5
n3 n2
!
n{ n5
ng 9

Table II1.7: M’ before suppressing duplicates

We then suppress duplicate transactions, here n{ (duplicate of n?), to get the final matrix of

table III.8.

Transaction identifiers (anchors) | (hnj, Pi2)

(hnlcla P13)

(hnlDl, P14)

ni ng g
TL% s
n3 n2
ng ng

Table II1.8: final M’
The execution of CHARM on M’ gives us:
o PS}' = {(hn}}, Pi2), (hn}, P}, tidlist' = {n}}
o PS¥ = {(hn}, P2), (hnt, Pis)}, tidlist® = {n?}
o PS¥ = (hnl, Po)}, tidlist® = {n},n?,n?, ng}
The result of PatternsToHook is the set of immediate hooking contexts:
o IHC, = ({(hng, Pr2), (hnpy, Pia)}, {(n1,m2,m6)}, {1 })
o THCy = ({(hny, Pi2), (hng, Pis)}, {(n1,m5,m3)}, {n1})

e THC3 = ({(hnyg, P12)},{(n1,n2), (n1,n5), (ng, n9)}, {n1,ns})

(We can notice that in THC3, the anchor (n1,n2) has been produced two times, but the union
without duplicates in the procedure ImmediateContexrts has only kept one of them, as expected).

Property 9 For a root pattern RP, the algorithm PatternsToH ook computes correctly IHCS(RP).



Proof: The transaction matrix M built at line 4 of PatternsToHook has as columns the
patterns of depth 1 of F% hooking on RP with their hook nodes, and as lines the occurrences of
RP. So the j-th element of the i-th line indicates the occurrences of the pattern j that hooks on
occurrence ¢ of RP for a specific hook node.

The CHARM algorithm of line 5 operates on a boolean version of M, for each occurrence of RP
(line of M), we know the patterns of depth 1 that hook on this occurrence, as well as their hook
node. So here CHARM computes exactly the closed set M HS(RP) of definition 30 (taking into
account the suppression of patterns of P.S; included into other patterns made at lines 9 to 13).

Then, for each pair PS; € M HS(RP) associated to its multiple hooking occurrences M HOS(PS}),
the lines 8 to 12 of the algorithm fill the corresponding lines of matrix M’.

The columns of M’ are the same as M, that are the patterns that hook on RP and their hook
node, but the lines of M’ are all the elements of Anchor(RP, PS;), for all the PS; in MHS(PR).

For each PSy = {(hny, Py),...,(hn,,P,)} € MHS(RP), the recursive function AllAnchors
fills for each occurrence ogr of MHOS(PS;) the lines of M’ corresponding to the elements of
Anchor(RP, PS;) that have og as RP occurrence. This is done by extending the line corresponding
to the occurrence og in M, that contains for each pattern of PS; all its occurrences hooking on RO,
by the specified hook node. So an element of Anchor(RP, PS;) having or as RP root corresponds
to the choice of an occurrence for each of the (hn;, P;),j € [1,n] (this choice is performed for each
(hnj, P;) by the loop of line 7 of AllAnchors). There are as many elements of Anchor(RP, PS:)
having op as RP occurrence as there are possible choices for the occurrences of the (hn;, P;),j €
[1,n].

For each line of M’ corresponding to an element (og, 01, ..., 0, ) of Anchor(RP, PS1), the proce-
dure RootInAnchor suppresses the occurrences o; that hook on other occurrences oy, € {01, ...,0n}
(lines 3 and 4). This guarantees that the occurrences that stay in a line of M’ are root occurrences.

While building M’, two different multiple hooking sets P.S1, PS], with PS; C PSj, can produce
the same lines after RootInAnchor. The line 21 of PatternsToH ook eliminates all duplicates from
M.

Applying CHARM on M’ at line 23 produces all the closed sets of patterns of depth 1 hooking
on RP. The occurrences of these sets of patterns all are root occurrences, so the patterns are root
patterns. Each set of pattern is an immediate multiple hooking set.

To ease the task of further procedures, we create structures called immediate hooking contexts.
The creation of these structures is made by the function ImmediateContexts, which eliminates
the immediate multiple hooking sets whose immediate hooking occurrences set IHOS size is lower
than ¢ (lines 9-10), and else sets the result in the expected output structure.

The resulting set 1HC'S satisfies the closure property, but according to immediate hooking an-
chors. The definition 32 of IHCS(RP) asks a closure according to immediate hooking occurrences.
The lines 25 to 29 guarantee this closure according to immediate hooking occurrences.

Hence the resulting set THCS is IHCS(RP), satisfying definition 32. O

Hooking and suppression of redundant leaves

The immediate hooking contexts previously computed allow to know which pattern of depth 1 to
hook on a root pattern RP of F%,, and on which hook node. The next step consits in performing
the hookings correctly in order to get the patterns of .773'1.

The hooking itself isn’t a problem, but once it has been done the redundant leaves coming
from the root pattern must be suppressed from the pattern resulting from the hooking. Several
combinations of suppressions are possible, and will produce several patterns of f%“.



So for a root pattern RP and an immediate hooking context I HC of this pattern, we must be
able to detect the redundant leaves.

Definition 33 (Redundant leaves for an anchor) Let RP be a root pattern,
let IHC = (PS1,IHAS,THOS) be an immediate hooking context on RP, with PS1 = {(hn1, P1), ..., (hng, P,)}.
Let fpn,,..., fx kK > n be the leaves of the pattern RP where does not hook a pattern of PS;.
For an anchor (og,o01,...,on) € IHAS, and for a mapping p € EM,,(RP, D) such that Vi €
[1,n] wu(hn;) = o0;, aleaf freq € {fn+1,--s fr} is redundant if there exists a pattern P; € {P1,...,P,},
a mapping i’ € EMo, (P;) and a leaf f' of P; such that pu(freq) = p'(f').

We introduce the notion of pattern creation context, with which it is possible to know exactly
what patterns to create. The computing of these pattern creation contexts from the immediate
hooking contexts comes before the creation of the patterns by hooking and suppression of the
redundant leaves.

Definition 34 (Pattern creation context) Let RP be a root pattern, let IHC = (PS,,IHAS,IHOS)
be an immediate hooking context on RP, with PS1 = {(hni, P1), ..., (hnn, Py)}. Let fny, -y fo k> n
be the leaves of the pattern RP where does not hook a pattern of PS;.

A pattern creation context PCC = (PS1, FG,PCAS,PCOS) is made of:

the set PSy of the frequent patterns of depth 1 immediately hooking on RP, with their hook nodes ;

the set FG = {f-red.1s--s f-redm} C {fn+1,---» f&} of the leaves of RP that musn’t be suppressed
after hooking ;

the set PCAS of the anchors supporting the immediate hooking of PS1 on RP where the leaves of
FG are not redundant. An anchor PCA € PCAS is

PCA = (0R,01, -, 0n, O—red.1s -5 O—red.m), Where (0g,01,...,0n) € IHAS and for all mapping p €
EMo,(RP,D) such that Vi € [1,n] p(hn;) = 0; and Vi € [1,m] p(f-redi) = O-red.i, the leaves
f-red.irt € [1,m] are not redundant ;

the set PCOS of the occurrences of RP appearing if PCAS, with |[PCOS| > ¢.

For a root pattern RP and an immediate hooking context THC, we want to find the closed
set PCCS(RP,IHC) of all the pattern creation contexts for RP and IHC.

Definition 35 Let RP be a root pattern and IHC € IHCS(RP) be an immediate hooking context
on RP. PCCS(RP,IHC) is the closed set of the pattern creation contexts on RP,IHC. Hence it is
the biggest set such that there are no two pattern creation contexts PCC = (PSy,FG,PCAS, PCOS)
and PCC" = (PS},FG',PCAS',PCOS") in PCCS(RP,IHC) such that:

FG C FG'

PCAS = PC’AS"FG (we only consider common parts of anchors, i.e. the occurrences of PSy and
FG)

Hence for each THC we get a set of pattern creation contexts PCCS(RP,IHC). The set
UraceracsPCCS(RP,THC) is the set that will be used to perform hookings. Nothing guarantees
that this set is closed according to patterns to hook and RP occurrences, so we define a new set

PCCS.



Definition 36 Let RP be a root pattern, and IHCS(RP) be the set of immediate hooking contexts
on RP. We define PCCS = Closed(UrgcecrncsPCCS(RP,THC)), i.e. there are no two pattern
creation contexts PCC = (PS1,FG,PCAS,PCOS) and PCC' = (PS},FG',PCAS',PCOS’) in
PCCS(RP,IHC) such that:

PS,CP Si
PCOS = PCOS'

We can at last create frequent patterns by hooking frequent patterns of depth 1 and suppressing
the redundant leaves, with the guidance of the pattern creation contexts of PCCS.

The procedure HookingSuppr, shown in algorithm 14, computes the set PCC'S and then builds
the patterns associated to it.

Algorithm 14 HookingSuppr

Require: A root pattern RP, its immediate hooking contexts ITHC'S

Ensure: PS the closed set of frequent patterns resulting from the hooking of the patterns in the
contexts THC'S on RP, with suppression of redundant leaves, NewPattIn fos which gives for
each new patterns the patterns it comes from.

1: PS<+ 0

2: PCCS « 0

3: NewPattInfos +

4: for all THC = (PS,IHAS,THOS) € IHCS do

5 PCCS « PCCSUCreatePCC(RP,IHC) |/ See algorithm 15

6: end for

7. // Guarante closure on occurrences

8: for all PCC = (PS.,FG,PCAS,PCOS) € PCCS do

9. if 3PCC' = (PS],FG',PCAS',PCOS") € PCCS st PS; C PS] and PCOS = PCOS’
then

10: PCCS + PCCS \ PCC

11:  end if

12: end for

13: for all PCC = (PS,,FG,PCAS,PCOS) € PCCS do

14:  Pey < new tree based upon RP @ PS,

15:  Suppress from P, the leaves coming from RP that are not in F'G
16:  Ppew-loc < 0

17 for all o € PCOS do

18: Occ.root < o

19: Occ.mappings < { mappings of RP corresponding to the anchors in PCAS} o { mappings
of PS; corresponding to the anchors in PCAS}

20: Prew-loc < Ppey.locU Oce

21:  end for

22:  PCAS' + PCAS without the references to non redundant leaves (same infos as an THC')
23:  NewPattInfos + NewPattInfos U {(Pyew, RP, (PSy, PCAS', PCOS))}

24: PS + PSUP,,

25: end for

26: Return (PS, NewPattInfo)




Algorithm 15 CreatePCC

Require: A root pattern RP, an immediate hooking context ITHC = (PS1,IHAS,THOS) (with

PS, ={P,...,P,}). Leaves of RP = {f1, ..., fn, fa+1, - ft}

Ensure: PCCS the set of pattern creation contexts for RP and ITHC.

[
I

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

PCCS «+
// Creation of the matriz to discover the set of non-redundant leaves
M < empty transaction matrix, columns = leaves f,11, ..., fk
for all A = (og,01,...,0,) € IHOS do
for all Occ € RP.loc st Occ.root € IHAS do
for all u € Occ.mappings st p(fi1) = o1 and ... and u(fn) = on, do
Create a transaction T, T'tid = (0R, 01, -, Ony b(frt1), -y (fx))
for all leaf f € {fn+1,..-, fx} doO
if AP, € PS1,0c¢d € Pyloc,p' € Ocd .mappings, f' € leaves(P;) with y'(root(P;)) =
0; st pu(f) = p/'(f') then
T[f] < 1 /] for this occurrence f exists as an exclusive leaf of og, so it must not be
suppressed
else
TIf] < 0
end if
end for
Add T to M
end for
end for
end for
FISS + CHARM(M,e¢)
Suppress from FISS all the itemsets whose anchors of their tidlist correspond to less than ¢
occurrences of THOS
// Creation of the patterns creation contexts
for all (fis,tidlist) € FISS do
PCOS < set of occurrences of RP appearing in the anchors of the tidlist
PCCS + PCCSU{(PSy, fis, tidlist, PCOS)}
end for
// Handling the case where all leaves are suppressed
if there is no PCOS such that PCOS =IHOS then
PCCS «+ PCCSU{(PS,,0,IHAS,THOS)}
end if
Return PCCS




Example: To demonstrate how HookingSuppr works, we will perform the hooking of the
immediate hooking contexts I HC4,IHCy, I HC3 previously defined on the root pattern P;;. We
recall the content of these immediate hooking contexts:

IHC: = ({(hng, Pr2), (hnp, Pia)}, {(n1,n2,n6)}, {m1})
IHCy = ({(hng, Pi2), (hng , Pi3)},{(n1,n5,n3)},{n1})
IHC3 = ({(hng, Pi2)},{(n1,n2), (n1,n5), (ng, n9) }, {n1,ns})

We name fp, fc and fp the leaves of Pi;.

When computing PCCS(Py1,HC1), the only leaf that may not be redundant is fc, because
Pi5 hooks on fp = hn%1 and P4 hooks on fp = hnbl. The corresponding matrix M, built by
CreatePCC, is then:

Transaction identifier = (P11, (hn}, Pi2), (hnk, Pi4), fo) ‘ fc
(7?,1,712,716,77:3) 0
(?’Ll,TLQ,nG,n?) 0

A 0 in a cell of the matrix indicates that for this transaction, f¢ is redundant and must be sup-
pressed. Clearly here, the leaf f¢ is redundant, so it must be suppressed. Hence PCCS(P11,[HC)) =
{PCCl}, with PCOl = ({(hnllgl, P12), (hnlDl, P14)}, @, {(’l’bl, no, ns)}, {nl})

The matrix for the hooking of THC5 on Pj; built by CreatePCC is:

Transaction identifier = (Pyq, (h’fl,lBl,Pu), (hn}},Plg), fp) ‘ fp
(nlan5an37n4) 0
(n1,7l5,n3,n6) 0

This case is similar to the previous one, so PCCS(Py1,IHCy) = {PCCs}, with PCCy =

({(hln’lBla P12)’ (h’nlcla P13)}a ma {(nl, ns, 7’1,3)}, {nl})
For the hooking of context THC5, the matrix M built by CreatePCC is:

Transaction identifier = (Pyq, (h‘n,lBl,Plg),fc,fD) ‘ fc fp

(nla N2, N3, N4

ni,n2,n3,Ne
n

bl
n bl

ni, N5, N7, N4

niy,ns5, N3, N6

)
( )
(n1 )
(n1 )
(nl,n5,n7,n6)
(n1 )
(n1 )
( )

ni, N5, N3, N4

ORI OIOoO|I =IO Oo
(=Y Nl ) Nl ey Nenl Il Nen)

(ng,ng,n10,M11)

The case where all the leaves are suppressed still happens thanks to occurrence ng. But this
time there are other closed frequent sets, we find in PCCS(Py1,HC3):

e PCC3 = ({(hn}, Pi2)}, {fc}, {(n1,n2,n7,n4), (n1, 12, n7,6), (N1, 15,13, n6), (N1, 5,3, n4) }, {1 })
o PCCy = ({(hn}, P12)},{fp},{(n1,n2,n3,16), (n1,n2,n7,106), (N1, N5, N7, 104), (N1, N5, 103, 10a) }, {M1 })

e PCCs = ({(hny, P2)}, {fc, o}, {(n1,n2,n7,n6), (n1,n5,n3,14) }, {n1})



o PCCs = ({(hny, P12)},0,{(n1,n2), (n1,7n5), (ng, ng)}, {n1,ns})

HOWGVGI, when building PCCS = PCCS(PH, IHCl)UPCCS(PH, IHCQ)UPCCS(PH, IHC3),
the pattern creation contexts PCC3, PCCy and PCC5 are eliminated by the closure property. So
PCCS = {PCC,,PCCy,PCCg}.

The figure I11.21 shows all the patterns created from PCC'S.

Definition 37 (Frequent patterns by immediate multiple hookings) Let RP be a root pat-
tern, and let PS; = {(hn1, Py), ..., (hng, P,)} be an immediate multiple hooking set on RP. The
set SPatt(RP, PS1) of the frequent patterns resulting from the immediate multiple hooking of P Sy
on RP is the closed set of the patterns P satisfying:

PC((RP®P)®..)® P,
| Loce(P,D) | > ¢

P hasn’t any redundant leaf

There is no pattern P' € SPatt(PR,EP;) such that:

-PCP
— Locce(P', D) = Loce(P',projected(P, D))(= Locc(P, D) here)

Definition 38 (Closed set of the patterns derived from a root patterns) Let RP be a root
pattern. SPatt(RP) is the closed set of the patterns derived from RP:

SPatt(RP) is the biggest set such that SPatt(RP) C Upg, crucsrp) SPatt(RP, PS1) and for
all pattern P € SPatt(PR) there is no P' € SPatt(RP) such that:

P'CP
Loce(P', D) = Locce(P!, projected(P, D)) (= Locc(P, D) here)

Property 10 From a root pattern RP and the set IHCS(RP) of its immediate hooking contexts,
the procedure HookingSuppr computes SPatt(RP).

Proof: For each THC = (PS1,IHAS,IHOS) € IHCS(RP), HookingSuppr calls the proce-
dure CreatePCC. The goal of this procedure is to compute PCCS(RP,IHC), let’s show that it
actually does it.

From lines 3 to 19, the procedure CreatePCC creates a matrix M. This matrix will be used
to compute the combinations of non-redundant leaves (leaves that must not be suppressed). Each
transaction of the matrix is built from a mapping respecting an element from I HAS (test of line 6),
from which we consider the occurrences for the leaves of RP where no pattern of PS; hooks (leaves
{fn+1, - fr}). For each of these occurrences, the test of line 9 checks that it isn’t redundant. This
tests exactly corresponds to the definition 33.

So we deduce that the closed set FISS produced at line 19 corresponds to the anchors and
non redundant leaves of PCCS(RP,I1HC), without taking care of the constraint on the number of
occurrences of THOS in the anchors. The line 20 ensures the satisfaction of this constraint, and
the lines 22 to 25 ensure correct formatting. To get exactly the set PCCS(RP,IHC), we have to
take into account the case when FG = (}, never taken into account by the algorithm CHARM.

Actually, to compute a closed set like PCCS(RP,IHC), CHARM does not takes into account
the case when F'G = (). But here this case is interesting, because it’s the case when all the leaves are
suppressed. Hence we also take it into account. The empty set is included into all other sets, but the
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support of the pattern where all the leaves are suppressed is the set TH AS: all the anchors support
at least that case, precisely because the empty set is minimal for pattern inclusion. Hence the case
FG = () will not be eliminated if there exists at least one anchor A = (og, 01, ...,0,) € THAS that
does not appear in any PCAS of the set of pattern creation contexts. For this, we demonstrate
that the occurrence og of A must not appear in any PCAS of the set of pattern creation contexts.
To do this, one have to notice that in the opposite case, if there exists a pattern creation context
whose PCAS contains an anchor like (og, 0}, ...,0},) having non-redundant leaves, then either its
non-redundant leaves are not descendants of o1, ..., 0,, and so the pattern of anchor A can also use
them as non-redundant leaves, or its non-redundant leaves are descendants of the nodes o, ..., 0y,
hence symetrically A can use the descendants of of, ..., 0], as non-redundant leaves.

We deduce that if an occurrence of THOS does not appear in any PCAS, then the pattern
creation context (PS1,0,IHAS,IHOS) is in PCCS(RP,IHC).

The lines 27 to 29 of CreatePCC handle this case.

So the set PCCS returned correspond exactly to the set PCCS(RP,IHC) of definition 35.

The procedure HookingSuppr does the union of the PCCS(RP,IHC) for all IHC € IHCS,
then in lines 7 to 12 guarantees that the set PCCS obtained is closed according to patterns to
hook and occurences. Hence the PCC'S set after line 12 is the set defined in definition 36.

After, for each pattern creation context PCC = {PS;,FG,PCAS,PCOS} € PCCS , the
algorithm build a pattern P such that:

e P=RP @ PS; (line 14)

e P only keeps the leaves of RP that are in F'G, so doesn’t contain any redundant leaf (line
15)

e The occurrences of P are the occurrences of PCOS (loop of line 17 and line 18)
e The mappings of P correspond to the anchor PCAS (line 19)

Let’s show that the set P.S of patterns returned is the set SPatt(RP) of definition 38.

For a given immediate multiple hooking set PSS, and more precisely for its immediate hooking
context THC = (PS1,IHAS(PS:),IHOS(PS1)), we have computed the set PCCS(RP,IHC).
Each element PCC € PCCS(RP,IHC) allows to make a pattern P, as previously described. Each
pattern P built this way satisfies the conditions of the definition of SPatt(RP, PS;) (definition 37).
The closure of the set of previously built patterns comes from the closure of PCCS(RP,IHC): the
only differences between the created patterns are the set of suppressed leaves. As PCCS(RP,IHC)
is closed according to the leaves to suppress, then from PCCS(RP,IHC) we correctly built
SPatt(RP,IHC)

Hence the patterns built from Urgoergcs PCCS(RP, IHC) make UrgoerpcsSPatt(RP,IHC).

The patterns built by HookingSuppr are created from PCCS = Closed(UrgcergcsPCCS(RP,IHC)).

So any created pattern P € PS is in UrgcergosSPatt(RP, IHC).

Let’s show that we have the closure. By negation, let’s suppose that it isn’t the case. Then
there exists P; and P, in EP such that:

e PC P
e Loce(Py,D) = Loce(Py, D)

P; and P, cannot come from the hooking of the same immediate multiple hooking set PS1 on RP,
because this would contradict the closure of SPatt(RP, PS;), which is guaranteed by the closure
of PCCS(RP, PS;) as previously demonstrated.



So P; comes from an immediate multiple hooking set P.S; and P, comes from a distinct imme-
diate multiple hooking set PS].

As P, C P, we deduce PS; G PS].

P, and P, come from the pattern creation contexts PCC = (PS;, FG,PCAS,PCOS) and
PCC = (PS},FG',PCAS',PCOS’"). The occurrences of P, and P, correspond respectively to
PCOS and PCOS’, so PCOS = PCOS'. We deduce that the set of pattern creation contexts
PCCS is not closed, hence a contradiction.

So PS = SPatt(RP). O

Hookings update

HookingSuppr adds patterns to .7-"%, creating .7-"iD+1. However, no arc is added in the hooking graph
towards these patterns. Furthermore, the closure of .7-'};"1 can be jeopardized by the adding of
the new patterns. The Update procedure, shown in algorithm 16, updates the hooking graph and
ensures the closure of Pb+1, in order to prepare the next iteration.

Property 11 After the execution of Update, the hooking graph contains all the arcs towards the
patterns added by HookingSuppr, correctly labelled.

Proof: The Update procedures receives as argument a structure N PI that contains the set of
all patterns created by HookingSuppr, and for each of these patterns P the root pattern RP it
comes from, as well as its immediate hooking context THC = (PS;,IHAS,IHOS).

And for a pattern P resulting from the hooking of PS; on RP, the only patterns of .7-"?1 that
can hook on it are the patterns hooking on the patterns of PS;. The two loops of lines 5 and 6
do analyse those patterns. Let Px be a pattern hooking on P; € PS;. Then: Anchor(P,Px) =
{(0,02) | (0,...,0j,...) € IHAS and (0;,0;,) € Anchor(Pj, Px)}. The building of NewAnchor, line
8 to 12, satifies these constraints, so NewAnchor = Anchor(P, Px). An arc from Px to P is added
only if Anchor(P, Px) isn’t empty. Hence the definition of hooking graph (definition 23) is satisfied,
so the property is true. O

Property 12 After the execution of Update, .7-"?’1 is closed.

Proof: This is trivial, the computations made from line 31 to 35 eliminate all the patterns that
do not respect the closure property of f’gfl. O

Consumption of used anchor elements: In order to simplify next iterations, Update con-
sumes all the anchors elements used in current iteration to build frequent patterns, from lines 19
to 27. Actually these elements will never be usefull again, and they musn’t be used, else the same
patterns would be produced again and again.

Example: Let’s continue our example on the datatree Dy. The patterns P;; and Pio are both
eliminated of F}, ", because their occurrences sets on Dy are included in their occurrences set in
projected(Pa3, Dz). The new hooking graph is shown in figure I11.22.

4.4 Soundness and completeness of DRYADE

We will demonstrate in this section that the algorithm DRYADE terminates, and that it is sound
and complete.

Lemma 1 (Termination) For all input datatree D and threshold e, the DRYADE algorithm ter-
minates. When DRYADE terminates, there are no arcs left in the hooking graph G.



Algorithm 16 Update

Require: .7-"})“ new set of frequent patterns, G hooking graph, N PI informations about all patterns

created by HookingSuppr, with format (created patterns, root pattern, immediate hooking
context).

Ensure: G updated hooking graph, .7:]%"'1 is closed

1:

N

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

for all (PS,RP,IHC = {PS,,IHAS,IHOS}) € NPI do
// All the new patterns of PS come from hookings of patterns in PS; on RP
for all P € PS do
/] Add arcs towards the new pattern
for all P, € PS; do
for all Px € pred(P;) do
NewAnchor « ()
for all (01,02) € Anchor(Py, Px) do
if 3(og,01) € IHAS then
NewAnchor < NewAnchor U {(o1,09)}
end if
end for
if NewAnchor # () then
Create an arc in G from Px to P, with label NewAnchor
end if
end for
end for
// Udate labels of anchors used in this iteration of DRYADE
PCC = (PS,,FG,PCAS, PCOS) «+ pattern creation context for P
for all arc (RP, P;), P; € EP; do
for all (og,01,...,0n,0p41,...,05) € PCAS do
Suppress (og, 0;) from the label of (PR, P;)
end for
if the label is empty then
Suppress the arc (PR, P;)
end if
end for
end for
end for
/| Guarantee closure of Fi*
for all P € ' do
if 3P' € Fi'' st P C P’ and Loce(P, D) = Locc(P, projected(P', D)) then
Fil e Fi - p
end if
end for




Figure II1.22: New hooking graph for Dz

Proof: The DRYADE algorithm terminates if there exists an iteration k£ such that for a root
pattern RP of .7-"115, the set THC'S computed from RP is empty. For that set to be empty, there
musn’t be any immediate multiple hooking possible on RP. And if there exists at least one pattern
P hooking on RP, either the hooking is immediate, or it is not immediate and in this case there
exists a pattern P’ such that P hooks on P’ and P’ hooks on RP. So P’ is in immediate hooking
with RP.

So for DRYADE to terminate, there mustn’t be any arcs left in the graph G of hookings: no
more patterns ff) hook with others patterns of .7-"3 And at each iteration, the Update procedure
consumes arcs of G.

Let % be an iteration of DRYADE. Let P be a pattern of F&,. Let’s call root distance the greatest
number of arcs separing P from a root pattern of .7-'}5 in G. Then at each iteration, the arcs
consumed by Update decrease by 1 the root distance of P (if P isn’t eliminated from the graph).
Actually, let RP be the root pattern for which the root distance of P is maximal. So there exists
a maximal chain of patterns in the graph: P -+ P, — .... = P, — RP. By definition, in this chain
P, is in immediate hooking on RP. The HookingSuppr procedure will then produce a pattern P’
resulting from the hooking of P, on RP (among others). The Update procedure will then suppress
the hookings between P, and RP. Some hookings towards P’ will also be added by Update, the
different chains of patterns that can be produced are:

e P— P, — .. — P, (if P, isn’t suppressed)
e P> P —..— P, 1 — RP (if RP isn’t suppressed)
e PP —»...5P,_1—P

All these chains have a length that are inferior by 1 to the length of the chain P - P, — .... —
P, — RP. Hence the root distance of P decreases by 1 at each iteration.

So for each pattern in .7-"%, there exists an iteration where either it is suppressed, or its root
distance is zero, which means it is a root pattern itself.

If P is root, then for its root occurrences it doesn’t hook on any pattern. For its other occurrences
it hooks on patterns that are in its cycle equivalence class, so these patterns are also root: these



hookings too will be suppressed in the next iterations
We deduce that there exists an iteration for which G has no more arcs, and so DRYADE termi-
nates. O

Lemma 2 The closed set F1 of the frequent patterns of depth 1 is the closed set of the flattenings

of the closed set F of the frequent patterns and of the flattenings of the subtrees of the patterns in
F.

Proof: To prove D: For Q € F, we know that its flattening is in F; (property 5). Let T be a
subtree of a pattern Q € F. So P = flat(T) is frequent. If P ¢ Fj, then it has been suppressed by
the closure property. Hence there exists P’ € F; such that P C P’ and Locc(P, D) = Loce(P', D).
So Loce(P', D) = Loce(T, D) because P has the same occurrences as T. As P C P', there exists
at least one label e that is in P/ but not in P, and for the occurrences of P’, hence also for those
of T', this label is always a descendant of the root of P’ (hence also the root of T'). So we deduce
that the tree 7' coming from the adding of a son of label e to the root of T' is frequent, with the
same occurrences as T. As T C T", this contradicts the closure of F. So flat(T) € Fi.

To prove C: Let P € F1 be a frequent pattern of depth 1. Let’s show that there exists a pattern
Q@ € F such that either P = flat(Q), or there exists a subtree T of @ such that P = flat(T). The
first case is a special case of the second, so we will only demonstrate the second case. Let’s suppose
by negation that there is no pattern Q € F such that P is a flattening of a subtree of (). As P
is frequent, its occurrences have to appear in the occurrences of the patterns of F. As P isn’t the
flattening of a subtree of a pattern in F, then it means that there exists a pattern @) € F that has
a subtree T" such that Locc(T”, D) = Locc(P, D), and T" has at least one more label than P (every
subtree from which P could be the flattening is thus included in 7"). Hence P C flat(T'). This
contradicts the closure of F;. So P is the flattening of a subtree of a pattern in F. O

Definition 39 (Truncation of a pattern) Let P be pattern of depth m, and let m' be a positive
integer such that m' < m. The truncation at depth m’' of P is the pattern P, whose nodes are the
nodes of depth inferior or equal to m' in P and whose arcs are the arcs between those nodes in P.

Definition 40 (m — 1-generator pattern) Let D be a datatree and F = Closed(P) be the closed
set of frequent patterns of D. Let P be a frequent pattern of D of depth m. Let {Q1,...,Qn} be a
set of patterns of F.
We say that P is m — 1-generator for {Q1,...,Qn} if Vi € [1,n]:

e PCQ;

e Loce(Qi, D) C Loce(P, D)

o the truncations of P and Q; at depth m — 1 are isomorph by an isomorphism .

e any subtree of P whose root r is at depth m — 1 is a flattening of the subtree of (Q; whose root is

wu(r) (by definition p(r) also is at depth m —1).

Example: Suppose that all the patterns of figure I11.23 have the same occurrences set. Then
the pattern P is 1-generator for the patterns 1 and Q5.

Lemma 3 (Characterization of DRYADE intermediate results) A each iteration i, the DRYADE
algorithm produces a closed set Fp, of frequent patterns.
This set can be decomposed in 3 separate subsets: Fp, = Fi U Fp U F{, where:

. F}_- is the set of patterns that doesn’t take part in any hooking at iteration i.
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Figure I11.23: Example of 1-generator pattern

° F;z is the set of root patterns of ]-'% that do not belong to F]’:
o F! is the set of patterns of depth 1 that hook among themselves or on patterns of F}'{.

These sets satisfy the following properties:

i. For all pattern Q € F, there exists a unique pattern P € .7-% of depth m that is m — 1-generator
for Q, such that there exists no m' — 1-generator patterns for Q in Fp, with m' > m. We say that
P is the biggest generator for Q, noted P = gen;(Q). If P € F}, then P = Q (the patterns of F}
are the patterns of F already discovered by DRYADE at iteration i).

ii. For all root pattern P € Ff;E there exists at least one pattern @Q € F such that P = gen(Q), and
Loce(Q,D) C RO(P).

iii. For all pattern Q € F, let m be the depth of its biggest generator. For each subtree T of Q
whose root has a depth greater or equal to m, flat(T) € F} U Fj,

iv. For all pattern P, € Ff there exist a pattern Q € F whose biggest generator is of depth m and
which has a subtree T whose root is at a depth greater or equal to m such that P = flat(T).

Proof:

Let i be an iteration of DRYADE. Let’s show that F%, can be split up in F%, F}j, and
Flz

Let’s consider G Q}"E the quotient graph of hookings of Pb.

. FJZ_- is the set of the patterns of .7-% that are not connected to any other pattern by hooking.

. Ffz is the set of patterns of whose cycle equivalence classes are roots of ng}') .

. Fl%7 is the set of pattern of .7-'}5 that are neither in F }_- nor in FIZ'{.

These sets are clearly separated, and by construction F% = FJ’: u F}E u Ff

Let’s show now that the properties i, ii, iii and iv are satisfied for any iteration i
of DRYADE

We will show by induction on the iterations of DRYADE that for each iteration 7 of DRYADE,
the properties i, ii, iii and iv are satisfied.



Casei=1

We suppose that the first iteration of DRYADE is the construction of the set of frequent patterns of
depth 1.

From property 7, we have F}, = F; = Closed(P:).

Let’s show that property i is satisfied:

Let @Q € F. From the property 5, there exists P € Fi, such that P = flat(Q).

Furthermore, P and ) have the same roots, so P is 0-generator for Q).

From the property 5, P is unique. As all the patterns of F}, are of depth 1, there cannot be
any m-generator patterns for @, with m > 0.

Suppose that P is a pattern of F}, i.e. that P doesn’t hook on any pattern of F},, and no
pattern of .7-"11) hooks on P. So @ doesn’t have any subtree. Else from the lemma 2 there would
exist in .7-% patterns being the flattenings of these subtrees, and these patterns would hook on P.
And @ is a depth 1 pattern. By construction of P, we deduce that P = Q.

So the property 1 is satisfied.

Let’s show that property ii is satisfied:

Let P € F}. We must show that P is O-generator for at least one pattern @ € F. For this,
according to lemma 2, we must show that P isn’t the flattening of a subtree of a pattern of F (it
is so specifically the flattening of a pattern @ € F).

For the set RO(P) of its root occurrences, P does not hook on any pattern. So for these
occurrences, P cannot be the flattening of a subtree of a pattern of F, otherwise there would be
hookings. Hence for its root occurrences, P is the flattening of a pattern @) € F. Let’s show that
Loce(Q, D) C RO(P). Suppose by negation that this isn’t true: then for some of its occurrences,
Q is a subtree of a pattern @)'. In this case, there is an arc in the hooking graph between P and
P' = flat(Q"). In order for P to be anyway a root, P’ should be in the same cycle equivalence
class as P. The occurrences of P’ on which P hooks cannot be extended by hooking to make the
cycle and come back to P, otherwise we would have Q C Q' C ... C @, which is impossible. So
there exists a pattern Q" such that P’ is generator for ", the occurrences of Q" are different from
those of @', and they hook (passing through the other patterns of the cycle) on the occurrences of
P. We deduce that Q" C Q C Q'. So the occurrences of Q' are also occurrences of ", hence a
new contradiction. So P isn’t root in this case.

Hence the property ii is satisfied.

Let’s show that properties iii and iv are satisfied

From i, for all pattern @@ € F its biggest generator exists and is 0-generator. The subtrees of Q)
we are interested in here are all the subtrees of ) except @ itself.

Let’s show first that for all pattern ) € F, the patterns corresponding to the flattening of its
subtrees are in F U F}.

e Let @ € F. From the lemma 2, for all subtree 7" of ) there exists a pattern P € F}, which is a
flattening of T. As T is a subtree of @), for its occurrences corresponding to the occurrences of
T, P hooks on flat(Q) € F},. Because P has hookings, then P isn’t in F}. So P € Fj, U F}.

Hence the property iii is satisfied.
Let’s show then that any pattern P € F is the flattening of a subtree of a pattern of F.

e Let P € F]. From the lemma 2, P is the flattening of patterns of F and/or of subtrees of
patterns of F. Suppose by negation that there is no T such that P = flat(T) and T is a
subtree of a pattern Q € F. Then P is only the flattening of patterns in F that never are



subtrees of other patterns of F. We deduce that P has no hookings with other patterns of
F},. This contradicts P € F}.

Hence the property iv is satisfied.
Thus, the case 1 = 1 is satisfied.

General case:

Let’s suppose that the property is true at iteration i, i.e. that we have .7-"% = F};UFEUF{ satisfying
i, ii, iii and iv. Let’s show that the property is still true at iteration 7 + 1.

Let’s show that property i is satisfied

Let @ € F. By induction hypothesis there exists P € Fi, such that P = gen;(Q). Let
m = depth(P). Three cases are possible:

e P e F} In this case, still by induction hypothesis, P = ). So we cannot find a bigger
generator for () than P, and as P doesn’t take part in any hooking it stays unchanged at
iteration ¢ + 1. Then P = gen;+1(Q).

e Pc F}'{. Let Py, ..., P, be the patterns obtained by hooking and redundant leaves suppression
from P. Let’s show that there exists j € [1,n] such that P; = gen;;1(Q).

By definition, P is m — 1-generator for Q). Let T, ..., T be the subtrees of () whose root is at

a depth greater than m — 1. By induction hypothesis, property iii, the flattenings of all these
subtrees are in Fé U F}. Q is frequent, so the multiple hooking of the flattenings of T4, ..., T}

is also frequent. Hence in M HS(P), there is PS; = {(hn1, flat(11)), ..., (hng, flat(Ty))}, and
the set of multiple hooking occurrences of PS; contains at least all the occurrences of (). PS;

is closed because in M HS(P), there isno set PS| = {(hn1, flat(T1)), ..., (hng, flat(Ty)), (hn', P')}
for the occurrences of Q. Actually in this case because P’ cannot be the flattening of a subtree

of @ (they already all are represented), it must be included in the flattening of one of these
subtrees. This is not possible by construction of M HS(P).

Let’s consider now the set {T7, ..., 7]} C {T1,..., T} } of the subtrees of Q2 whose root is exactly
at depth m. All the roots of the other subtrees of lower depth are descendants of the roots of
{T{,...,T]}. We deduce that flat(T7), ..., flat(T}) are the only patterns that does not hook on
any pattern of flat(Th), ..., flat(Ty). Hence they satisfy the definition of immediate hooking.
So there exists in THCS(RP) an immediate hooking set {(hn!, flat(T})), ..., (hn, flat(T}))}
whose occurrences contain the occurrences of Q). The roots of T7, ..., 7] are the internal nodes
of depth m of Q.

Let fi,..., fp be the leaves of depth m of (). By construction, these leaves are also leaves
of P. To these leaves correspond nodes in the data, that of course cannot be found in any
of the subtrees T7,...,T/. So these nodes aren’t in the nodes corresponding to the leaves of
flat(TY), ..., flat(T}). Hence they satisfy the definition of non-redundant leaf. We deduce
that there is in PCCS(RP) a pattern creation context

PCC = ({(hn}, flat(1})), ..., (hny, flat(T}))}, { f1, -, fp}, PCAS, PCOS), whose occurrences
contain the occurrences of ().

The pattern P; built from PCC' will then be a m-generator pattern for ().

To have P; = gen;11(Q), we must show that:

— Pj isn’t eliminated during update.



* Suppose by negation that P; is eliminated during update. It means that P
isn’t closed, so there exists P’ € Fp such that P; C P’ and Locc(P;,D) =
Locc(P;, projected(P, D)). And we know that the occurrences of () are included
in those of P;, as P; is m-generator for ().

Suppose first that root(P;) # root(P'). Then for all the occurrences of @, the root
of @ has as ancestor the root of P’. This contradicts the closure of F.

Suppose now that root(P;) = root(P'). P' cannot come from the pattern P which
has generated P;, because for P we have build SPatt(P), which is closed. So either
P’ has nodes of depth lower than m additional to the nodes of P, or P’ has nodes
of depth greater or equal to m additional to the nodes of P, and which have labels
that are not in the labels of P. In both cases, these additional nodes exist for all
the occurrences of () but cannot be in (), which contradicts the closure of F.

Hence P; isn’t eliminated by closure.
— P; is the unique biggest m-generator for (.

* We know by induction hypothesis that P is the unique biggest m — 1-generator
of (). There exists by construction a unique multiple hooking set of M HS that
contains exactly the flattenings of the subtrees of Q). As well, by construction there
exists a unique immediate multiple hooking set in THCS(P) which contains the
flattenings of the subtrees of depth m of Q. And by construction, there exists a
unique pattern creation context of PCCS(P) that contains the flattenings of the
subtrees of depth m of () and the leaves of depth m of (). Hence the unicity of P;.

P; is maximal: otherwise, it would mean that there exists another root pattern P’
that has produced a pattern at least m+ 1-generator for (). And as by hooking and
suppression of redundant leaves from a k-generator pattern, we can at most get a
k + 1-generator pattern, then P’ itself should be m-generator for @, contradicting

P = geni(Q).

e P ¢ F!. We must show that P isn’t eliminated by Update, and that it stays the biggest
generator of @) at iteration 1+1. If P isn’t in immediate hooking with a root pattern RP € F}'{,
then it isn’t analysed by Update, and so stays unchanged. Else, P is suppressed by Update
if there exists a pattern P’ produced from RP and P, that is not eliminated, such as all the
occurrences of P can be deduced from the occurrences of P'. As P’ isn’t eliminated, from
previous demonstration there exists @' € F such that P’ = gen;1(Q"). We have necessarily
Q C @', so by closure of F we have: Locc(Q,D) D Loce(Q,projected(Q’, D)), i.e. there
exists occurrecnse of @ that do not come from the inclusion of @) in @)’. So the corresponding
occurrences of P aren’t included in those of P’, so P isn’t eliminated

We deduce that P stays the biggest generator for Q: P = gen;;1(Q)-

Hence the property i is satisfied in the general case.

Let’s show that property ii is satisfied

We must demonstrate that for all root pattern P € Fg’l, there exists a pattern @ € F such
that P = gen;11(Q). The patterns come in F}%H from two different ways:

1. Either P has been built by hooking and suppression of the redundant leaves from a pattern
RP € F},.



2. Or P is a pattern of F} that became root after suppression of some of its hookings by Update.

We will show that in these two cases there exists @ € F such as P = gen;1(Q).
Let P € Fit.

1. P has been built by hooking and suppression of the redundant leaves from RP € F}%. So we
can associate to P a pattern creation context PCC € PCCS(RP), to which we can associate
an immediate multiple hooking set PS; € IHCS(RP), to which we can associate a multiple
hooking set MH € MHS(RP). Let Pi,..., P, be the patterns of M H, let’s show that there
exists ) € F containing RP such that P, ..., P, all are flattenings of subtrees of @) at the
level of the leaves of RP.

Suppose by negation that there exist no ) containing RP whose flattening of the subtrees at
the level of the leaves of RP are P4, ..., P,.

However, the hooking of the patterns P, ..., P, on RP is frequent and closed, so the corre-
sponding ancestor relations must appear in at least one pattern Q € F.

e Let Q € F whose flattenings of the subtrees hooking on the leaves of RP are Pi, ., P}, .., Py,
with P; C P/ and P;, P/ hook on the same leaf of RP. This case cannot happen, because
by construction the patterns P, ..., P, are maximal for tree inclusion for the hooking
on a given leaf of RP.

e Let @ € F whose flattenings of the subtrees hooking on the leaves of RP are {P/, ..., P,,} D
{P1, ..., P,}. As previously, this case cannot happen: P/, ..., P}, hook on the hook nodes
of RP, this would imply that the computation of the closed set M HS(RP) is uncorrect,
whereas we have proved before it’s correct.

e Let @ € F whose flattenings of the subtrees hooking on the leaves of RP are Py, ., P/, .., Py,
with P/ C P;.
This case cannot happen, because here P; has at least one more node than P, and this
node is frequent. As () does not have this node, it contradicts the closure of F.

e Let Q € F whose flattenings of the subtrees hooking on the leaves of RP are {P{,..., P}, } C
{P1,..., P, }. This case also cannot happen, for the same reason as before: the hooking
ofany P; € {Py, ..., P,}\{P}, ..., P}, } is frequent, but not in @, so there is a contradiction
with the closure of F.

So there exists at least one pattern Q € F containing RP whose flattenings of the subtrees at
the level of the leaves of RP are the patterns P, ..., P, of the set M H. Two cases are possible:
either RP = gen;(Q), or there exists RP' € F}, U F% such that RP C RP' = gen;(Q).

We now have to demonstrate that there exists at least one pattern ) € F whose flattenings of
the subtrees hooking immediately under the leaves of RP, and which are not included in any
other subtree of Py, ..., P,, are the patterns P{,..., P!, of PS; € IHCS(RP). Then we have to
demonstrate that there exists a pattern () € F for which the leaves of RP that remain leaves
in @ are the non-redundant leaves found in the pattern creation context PCC € PCCS(RP).

We do not detail the demonstrations of these two properties because they follow exactly the
same reasoning as the previous one, focusing no longer on P, ..., P, but on P[,..., P/, and
then on the non-redundant leaves.



We deduce that there exists at least one pattern () € F containing RP whose flattenings of
the subtrees hooking immediately on the leaves of RP are the patterns of PSi, and whose
leafs common to the leaves of RP are the non-redundant leaves found in the pattern creation
contexts PCC.

If RP = gen;(Q), then P is m-generator for @ by construction. Using the proof of property
i, we get P = gen;11(Q).

Else, there exists RP' € F ;t UF } such that RP C RP' = gen;(Q), and the occurrences of
P are induced by the occurrences of RP'. In this case P must be eliminated by the update
step, but as P hasn’t been eliminated we are in the previous situation: RP = gen;(Q).

2. P is a pattern of F} which became root after suppress of some of its hookings by Update. We
have seen in the demonstration of property i that if there exists @ € F such that P = gen;(Q),
then P isn’t eliminated. Let’s show that in the opposite case, P is eliminated by Update. As
the hookings of P have been suppressed by Update, then P was in immediate hooking with
a root pattern RP € F;z- Suppose by negation that P isn’t eliminated by Update. It means
that for any pattern P’ € .7-"})“ such that P C P’, some occurrences of P are not induced
by its inclusion in P’. As the patterns of F are included in the patterns of .7-"3'1, then as
well for all pattern (Q € F such that P C @), some occurrences of P cannot be deduced of its
inclusion in (). This means that P itself is a pattern of F. This isn’t possible because we
have supposed here that P wasn’t generator of any pattern of P. So if P isn’t the biggest
generator of any pattern of F, then P is eliminated.

As P isn’t eliminated, then there exists @ € F such that P = gen;(Q). This doesn’t change
during the DRYADE iteration so P = gen;1(Q).

Hence the property ii is satisfied.

Let’s show that the properties iii and iv are satisfied

The properties iii and iv are true at iteration ¢ by induction hypothesis. So for all ) € calF,
with P = gen;(Q) of depth m, the flattenings of the subtrees of @@ whose root is at a depth greater
or equal to m are in F}z U F?. And for all P € F}, we can show that it is the flattening of a subtree
whose root is at a depth greater or equal to m of a pattern @@ € F whose biggest generator is of
depth m.

Let’s show first that for all pattern () € 7 whose biggest generator at iteration 7 +1
is of depth m + 1, the flattenings of its subtrees whose root has a depth superior or
equal to m + 1 are in Fj™ U F}".

For the patterns () € F whose biggest generator doesn’t change at iteration ¢+ 1, we must show
that no flattening of the subtrees of @) is eliminated. Suppose by negation that this is wrong: let
P be the flattening of a subtree of ) whose root in () is at a depth greater or equal to m, suppose
that P is eliminated. It means that P was in immediate hooking with a pattern RP, generator
for the patterns of F other than (), and that all the occurrences of P can be deduced from the
occurrences of a pattern P’ resulting of the hooking and of the suppression of the redundant leaves
of P on RP. It would mean that all the occurrences of @ (included in those of P) can be deduced
from the occurrences of P’, hence a contradiction with the closure of F.

For the patterns Q € F whose biggest generator changes at iteration ¢ + 1, it means that
the new generator P has been built by hooking and suppression of the redundant leaves from the
old generator RP, as seen in the previous demonstrations. In this case, the only flattenings of
subtrees of ) that can be suppressed by Update are the patterns in immediate hooking on RP,



corresponding to subtrees whose root is at depth m in ). The flattenings of these subtrees whose
root is at depth superior or equal to m + 1 are not eliminated.

Hence the property iii is satisfied.

Let’s show now that for all pattern P € Ff“, we can find a pattern () € F whose
biggest generator is of depth m+1, and for which P is the flattening of a subtree whose
root is at a depth superior or equal to m + 1 in Q.

By construction, if P € Ff“ then P € F}. So by induction hypothesis, there exists Q € F
whose biggest generator RP is of depth m, and for which P is the flattening of a subtree whose
root has a depth superior or equal to m in Q.

If RP isn’t root, the biggest generator of ) doesn’t change from one iteration to another.
Actually, we cannot have RP € F}, because in this case we would have RP = (), and P would be
reduced to a single node, which isn’t possible in our context. So RP € F}. As it isn’t root, there
are no hookings made, so () doesn’t change of biggest generator. So P is still the flattening of a
subtree of () whose root is at a depth superior or equal to m, the depth of the biggest generator of
Q-

If RP is root, then we have seen in the proofs of the properties i and ii that at iteration 7 + 1,
we build from RP a pattern P’ = gen;11(Q), P’ of depth m + 1. If P was only the flattening of a
subtree whose root is of depth m of @, then P would have been used to build P’, and it would have
been eliminated because its occurrences could have been deduced from those of P'. Otherwise, it
would have became root (see proof of lemma 1). Because P hasn’t been eliminated and isn’t root,
P is the flattening of a subtree of depth greater of equal to m + 1 of Q.

Hence the property iv is satisfied.

So the general property is true by induction. O

Lemma 4 Let Q € F. If there exists an iteration i of DRYADE for which gen;(Q) is a root pattern,
then there exists an iteration of DRYADE i’ > i where Q is discovered by the algorithm, i.e. Q € F}_ﬁ

Proof: Let P = gen;(Q), of depth m, P is then m — l-generator for (). Let’s show that
i' =i+ depth(Q) — m.

We know that P is such that @2 and P have the same truncation at depth m. We have seen in
the proof of the previous lemma that at iteration i + 1, SPatt(P) will contain a pattern P’ which
will be m-generator for ). By applying recursively this method, from iteration i, depth(Q) — m
iterations are necessary to discover the pattern Q). O

Lemma 5 Let P € F1 = .7-"}). If there exists Q € F such that P = geni(Q), then there exists an
iteration 1 of DRYADE where the patterns P becomes root, i.e. P € Fp,. Otherwise, there exists an
iteration 1" where P will be eliminated from PD'.

Proof: We have seen in the proof of lemma 1 that for any pattern of F},, after some iterations
of DRYADE, either it becomes a root pattern, or it is eliminated.

Furthermore, we have seen in the proof of the lemma 3 (general case, properties i and ii), that
any eliminated pattern of F} wasn’t a biggest generator for a pattern of F.

Hence the patterns which become root are those which are the biggest generators of a pattern
in F. O

THEOREM 2 The DRYADE algorithm is sound and complete.

Proof:



Showing that DRYADE is sound and complete comes to show that there exists an iteration k for
which FE = F.

Completeness

Let’s show that there exists an iteration k for which F]k_- =F.

Let Q € F, consider P € F}, it’s biggest generator.

o if Pe F}, then Q has already been discovered by DRYADE.

o if Pe F}z, then from the lemma 4, there exists an iteration at which ) will be discovered by
DRYADE.

e if P € Fl, then from the lemma 5, there exists an iteration at which P will become root, so
from the previous case () will be discovered by DRYADE at a later iteration.

So for all @Q € F there exists an iteration kg where ) is discovered by DRYADE, hence the
completeness.

Soundness

Let’s consider the iteration k& where DRYADE terminates, we have F& = F. Let’s show that
Fk=FF =0.

As DRYADE has terminated there are no hookings left in the graph, from lemma 1. So if there
are any patterns left, these are either patterns of FJE_, or patterns of FI’%: Fk =.

Thanks to property ii of lemma 3, if there is a root patterns left, it is generator for a pattern

in F. At iteration k this isn’t possible, so F£ = (). Hence the soundness.
O



CHAPTER IV

Experimental study

The goal of this chapter is to empirically study the performances of the DRYADE algorithm. For this
study, we have realised an implementation of DRYADE. We will first describe the specifications of
this implementation, then we will detail the experimental settings. After, we will give experimental
results, and we will discuss them.

1 Implementation

From the DRYADE algorithm shown in the second part of the chapter III, we realised a C++ imple-
mentation. This implementation is 15000 code lines long, and intensively uses the data structures
of the Standard Templates Library (STL).

During the realisation of our implementation, due to time constraint we have had to make
choices that slightly differ from the algorithm presented in chapter III. We will explain these
choices and the corresponding restrictions.

1.1 EcLAT instead of CHARM

We have seen in chapter 111 that for DRYADE, we need a vertical algorithm of closed frequent itemset
discovery, like CHARM. M. Zaki kindly gave us his implementation of the CHARM algorithm. For a
maximal efficiency, the idea was to be able to integrate directly the code of M. Zaki in our program.
However, the code of CHARM is very complex and relies on several programs preparing the data.
Due to lack of time, we couldn’t analyse all these programs and regroup them in a C++ class easy
to use in our implementation.

Hence, we have used as vertical algorithm of closed frequent itemset discovery the ECLAT
algorithm, whose C implementation has been given to us by C. Borgelt, whom we thank here.
It was very easy to integrate the ECLAT code in a C++ class compatible with our program. As
ECLAT computes all the frequent itemsets, we have added a postprocessing filter that returns only
the closed frequent itemsets.

The only consequence of this choice is to increase the running time of our program. We do not
measure the execution time of the filter, but using ECLAT instead of CHARM makes our running
time loose an order of magnitude, from the studies of M. Zaki ([ZPOL97], [ZG03]). The times we
will give for our algorithm will then separate the time relative to the computation of closed frequent
itemsets, for which ECLAT gives an upper bound, from the DRYADE execution time.



1.2 No mapping storage

Our DRYADE implementation is based on an early implementation of DRYAL, which allowed us to
test our method.

The data structures used in the DRYAL implementation do not keep, for a frequent pattern, all
its mappings in the data. This is unecessary for DRYAL: to do the hookings, the only elements to
keep are the elements of the mappings corresponding to the root and the leaves of the pattern.

To speed up the development of our DRYADE implementation, we have kept the same data
structures as in the DRYAL implementation, i.e. the mapping of a pattern is represented only by
the image of the root and the image of the leaves.

So our code have two limitations compared to the DRYADE algorithm described in the chapter
ITI.

1.Closure test Because we don’t know precisely the mappings, the test guaranteeing closure at
the end of the Update procedure (algorithm 16) cannot be done. It means that some duplicate
patterns can be generated. The influence of these duplications upon the running time of our
algorithm can be discussed as follows. In one hand, the test guaranteeing closure at the end
of procedure Update isn’t performed, which allows to save some time. On the other hand,
the duplicate patterns that can be generated will have to be processed in the next iterations.
Clearly, the overcost of the duplications is higher than the cost of the closure test when the
size and the number of solutions increases, this corresponding to an exponential increase of
the number of duplicate patterns.

€0
A ny A ng
B | ng B | ns B | ng
C ng D Ng C n10

@ Ty @ ny @ nn
Figure IV.1: Dy

Even if the closure test at the end of procedure Update isn’t performed, most of the patterns
found by DRYADE are cloded patterns, because the results of the algorithm of frequent itemset
discovery are closed. This is guaranteed by the postprocessing of the itemsets given by ECLAT.

2. Trees shape In some specific cases, having a data structure that doesn’t represents the map-
pings in full prevents a correct processing of the hookings. These cases correspond to the
trees that have at least two nodes u and v of same label, where one isn’t descendant of the
other, and such as there are no descendants of u and v sharing a common label.
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Figure IV.2: Frequent patterns of depth 1 of Dy
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Figure IV.3: Pattern P»3 obtained by hooking and suppression of redundant leaves



The figure IV.1 shows a datatree Dz that contains such a tree, it’s the tree whose root node
is n1. Actually, the nodes ny and ns of these tree are both labelled by B, and both have
descendants labelled by C and D.

The problem comes when hooking and suppressing redundants leaves of Pjo on Pj; (figure
IV.2), which gives the pattern Py3 (figure IV.3). There are three mappings between the nodes
of P»3 and the nodes of Dy, represented in the next table:

Ps3 node ‘ Mapping 1 Mapping 2 Mapping 3

(4 n ni ng
U2 n2 ns ng
u3 n3 nr n10
Uy T4 e n11

In the code, the mappings 1 and 2 cannot be discriminated: they correspond to a unique data
structure that associates to u; the node nq, to ug the nodes ng and n7, and to us the nodes
n4 and ng. This representation implicitly supposes that in Dz the nodes no and ns5 are the
same, which isn’t true. This will lead to uncorrect hookings: for exemple, the simultaneous
hooking of P;3 and Pi4 on Pas.

Hence our experiments only consider cases where a correct processing of the hookings is
guaranteed. This means that in our experiments, the input trees always satisfy the following
constraint, that we call CNTR.

Constraint: A tree satifies constraint CNTR if for all couple of nodes u and v of same
label, either u is ancestor of v or no descendant of u has the same label as a descendant of v.

So our implementation differs from the algorithms of chapter III in two ways: in one hand, the
update test is incomplete, which penalizes the running time when the problem has big solutions.
On the other hand, we suppose that the input trees satisfy the constraint CNTR.

2 Experimental settings

The goal of our experiments is to investigate the performances and the behavior of DRYADE on tree
data. We will also compare DRYADE to the only algorithm that can address the same problem,
namely WARMR. Of course this comparison isn’t fair, because WARMR is an algorithm that can
find solutions to problems far more general than those addressed by DRYADE, and it doesn’t use
the closure property. However, it’s the only algorithm with which we can compare, hence we will
compare the performance increase that our specific approach can bring, compared to a general
approach.

Today, to the best of our knowledge, there are very few freely available tree databases. And in
XML documents, there are often synonymy and polysemy problems with the tags, problems that
we only touched in the introduction, and that come before DRYADE.

So the experimental validation will use, in one hand a set of randomized problems (sections 3.1
and 3.2), and in the other hand a real application (section 3.3).

The framework considered for the validation of our approach is first detailed.

The randomized data are generated with an uniform distribution, for which we have defined 4
order parameters:



e N : the number of trees in the corpus
e E : the set of labels (without loss of generality, the labels are integers from 0 to |E| — 1)
e B : the average branch factor for a tree of the corpus

e P : the average depth of leaves for a tree of the corpus

The generation of the corpus is done by the procedure GenerateCorpus, shown in algorithm
17.

Algorithm 17 GenerateCorpus

Require: E the set of labels, B the average branch factor, P the average depth, N number of
trees

Ensure: A corpus of N trees with labels in F satisfying the constraint CNTR, such that each
tree has an average branch factor B and an average depth P.

1: Corpus < 0

2: fori=1to N do

3 nbI'rials + 0

4: repeat

5: repeat

6: tree «+ GenerateTree(P, E,2B, P) // see algorithm 18

7: until averageDepth(tree) = P and averageBranch(tree) = B
8: nbTrials < nbIl'rials + 1

9:  until (tree satisfies CNTR) or nbTrials > MAX TRIALS

10:  if nbTrials > MAX TRIALS then

11: Exit with an error: the generation of this corpus is overconstrained
12:  else

13: Corpus < Corpus U {tree}

14:  end if

15: end for

16: Return Corpus

The essence is to generate randomized trees with the procedure GenerateTree (algorithm 18),
then to keep in the corpus only those that satisfy the constraints of average depth/branch factor,
and that satisfy the CNTR constraint. This method is expensive in running time, but it avoids
to introduce an important bias while generating a tree, as one can see when looking at procedure
GenerateTree.

The only bias compared to an uniform generation (line 1 of algorithm 18) is motivated by our
desire to get non-trivial solutions, i.e. solutions of depth strictly greater than 1, for small values of
P. Actually, preliminary investigations showed that for small values of P (lower than 3 or 4), there
are few frequent patterns of depth greater than 1 in the data. But increasing P is extremely costly,
because the number of ancestor relations to consider increases exponentially. The bias introduced
to improve this is to partition E in P + 1 separate subsets of same size E[0], ..., E[P]. If E cannot
be divided by P + 1, all the subsets receive round(|E|/(P + 1)) labels, except E[0] which receives
the remaining labels.

For each depth level p the labels of the nodes of this level are drawn evenly in the subset E[p].

This bias allows to find frequent patterns of depth greater or equal to 2 even if P value is 3 or



Algorithm 18 Generatelree

Require: p the current depth, E the set of labels, bmaz the maximal branch factor, pmaz the
maximal depth

Ensure: A random tree with labels in £ of maximal depth pmaz, with maximal branch factor
bmax

1: e + random drawing of a label in E[p]

2: m < new node of label e

3: if p > 0 then

4: b« random drawing of a branch factor between 0 and bmax
5. if (b=10) and (p = pmaz) then

6: b < 1 // Avoids to have trees reduced to a single node

7. end if

8 fori=0tobdo

o: n; < GenerateTree(p — 1, E, bmax, pmax)

10: Add n; as son of n

11: end for
12: end if
13: Return n

Most of the experiments have been realised with Pentium IV 2.8 Ghz with 521 Mb RAM,
running Linux. Some experiments have been realised with an AMD Athlon 1 Ghz with 1 Gb RAM
(we will state when it’s so).

3 Results

In the first section, we will compare WARMR and DRYADE. Then we will study the effective
complexity of DRYADE in the second section, before finishing by a study with real data.

3.1 Comparison with WARMR

To compare DRYADE with WARMR, we traduce each randomly generated tree corpus in a format
that WARMR can use. For this, each tree is replaced with its relational encoding. We use the
relational encoding Rel™ described in the paper [TRS02]. WARMR needs to now the maximal
number of atoms of the solutions that it is looking for: we have set this limit to the average number
of father-son edges of a tree in the corpus.

We have produced three corpuses for the test:

Corpus 1 1000 trees, P =3, B =1, |E| € [4..56]
Corpus 2 1000 trees, P =3, B =2, |E| € [16..56]
Corpus 3 1000 trees, P =3, B = 3, |E| € [24..56]

Notice that the values of |E| do not start at 1, because when there are too few labels it’s
impossible to generate trees satisfying the constraint CNTR.

The frequency threshold is 15. For each corpus characterised by P, B and a number of labels
|E|, we make 8 different random runs. The running time of the programs WARMR and DRYADE is
limited to 1 hour by run.



On the corpuses 2 and 3, we cannot give any result for WARMR, because depending on the
number of labels, either WARMR takes longer than 1 hour for its execution, or it consumes all the
memory and is stopped by the OS. In the same conditions, DRYADE always finished its execution
correctly.

The results for the corpus 1 are presented in figure IV .4.

Corpus 1
3500 T T T T

Dlryade

3000 b
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1500 B
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500 B

-500 1 1 1 1 1
0 10 20 30 40 50 60

Number of labels

Figure IV.4: Difference of running time for WARMR and DRYADE

We can notice that the run time of DRYADE is lower to WARMR’s one by several orders of
magnitude. Actually, the maximal time used by DRYADE to find frequent patterns is 1.14s, when
there are 8 labels in F. In the same conditions, WARMR needs 493.19s to find the frequent trees.
As soon as the number of labels in F is higher than 12, WARMR cannot answer within the given
time and memory limits.

As we have seen before, this comparison isn’t fair. Whereas DRYADE is computing only the
closed frequent patterns, WARMR is computing all the frequent patterns. This needs a lot more
computation time, and once again we can see the efficiency of an approach using the closure
property.

Furthermore, even simple frequent patterns can be represented with logical formulas that can
be rather long. Let’s consider the tree A of figure IV.5.

Let’s consider now a very simple corpus with only this tree, and a threshold of 1. Hence the
only tree to find is A itself. On the 1 Ghz Athlon, DRYADE finds A in less than 0.01 second. On
the same machine, WARMR needs 1508.6 s to find A.

So WARMR is limited by the fact that it doesn’t looks for closed frequent patterns, but also
because the formula encoding the parent relation of A is 6 atoms long (number of arcs in A). Finding
long frequent formulas with WARMR is difficult, as [[WMO0O0] already showed. In the specific case
of data structured as graphs (moleculas) of this paper, the graph-specific approach developped can
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Figure IV.5: Perfect binary tree of depth 2

find frequent structures more complex than those found by WARMR.

In the same way, our approach specific to tree data is significatively faster than WARMR, on this
kind of data.

3.2 Performance study
3.2.1 Scaleup

We will first study the behavior of DRYADE depending on the number of trees given as input. We
consider an instance of corpus 2, i.e. trees of average depth 3 and average branch factor 2. The
number of labels is set to 20, because we know it’s a case where DRYADE must find solutions with a
depth greater than 1. The relative threshold is 0.015 (15/1000). The number of trees varies between
1000 and 10000. The figure IV.6 shows the execution time of each step of DRYADE (logarithmic
curves).

With more than 8000 trees, DRYADE couldn’t finish its execution due to memory saturation.

The lower curve corresponds to the time for discovering closed frequent patterns of depth 1
by EcLAT. This curve with logarithmic scale is clearly sublinear, as expected. It is known that
ECLAT is linear on the number of transactions, i.e. the number of nodes in the data. And here only
the number of trees change, there are trees having on average the same number of nodes, and the
frequency threshold is relative. So ECLAT is expected to be linear on the number of input trees.

The next curve corresponds to the time after the discovery of the hooking anchors between the
frequent patterns of depth 1, its logarithmic aspect is also sublinear. Hence this step is polynomial
on the number of input trees.

The last curve represents the total time of the algorithm, its sublinear logarithmic aspect allows
us to state that DRYADE is polynomial on the number of input trees.

This results allows us to hope that with a more efficient memory handling (condensed [JB02]
or compressed representations for example), DRYADE would be able to handle even more data.

3.2.2 Detailed analysis of the 3 steps of DRYADE

The DRYADE algorithm has 3 steps: first it computes the closed frequent patterns of depth 1 (with
ECLAT in our code), then it computes the hooking graph between these patterns, then it makes
the hookings.

Computation of closed frequent patterns of depth 1:
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Figure IV.6: Scaleup experiment

This first step relies on well know algorithms, so we do not study it’s complexity here.

Computation of the hooking graph:

The time for computing the hooking graph depends on the number of closed frequent patterns
of depth 1 discovered at the first step. To show this relation, we give in tables IV.1, IV.2 and IV.3
the curves with on x-axis the number of frequent patterns of depth 1 discoverd, and on y-axis the
time for computing the hooking graph (left curve), and the logarithm of this time (right curve).

The logarithmic curves for corpus 2 and 3 (average branch factor of 2 and 3 respectively) are
sublinear. So the time for computing the hooking graph is in these cases polynomial on the number
of patterns of depth 1. By looking at procedure ComputeGraph (algorithm 7 page 49), this can
be explained: the first test, quadratic on the number of frequent patterns of depth 1, tests the
possibility of a hooking, and fails in most cases (hence no further computations are made).

However, the curve for corpus 1 (average branch factor of 1) exhibits a different behavior, that
we will analyse.

The curve IV.7 shows the evolution of the number of frequent patterns of depth 1 depending on
the number of labels. An analytic modelisation is given in annex at the end of this chapter, we will
sum it up here. The key point is that the number of frequent patterns of depth 1 has, depending
on the number of labels, two peaks. One corresponds to a majority of “long” patterns (more than
2 sons), the other to a majority of “short” patterns (only one son). To better understand the
evolution on hooking graph computation time in this case, we propose another representation in
the next paragraph.

We have the following hypothesis: for an average branch factor of 1, there are many frequent
structures of depth greater than 1, all the more when there are few labels in the trees of the corpus.
So, there are many anchor computations to do in ComputeGraph, unlike corpus 2 and 3. To
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Figure IV.7: Corpus 1

investigate this hypothesis, we will provide a curve with on x-axis the ratio between the number
of frequent structures discovered at the end of DRYADE execution, and the number of frequent
patterns of depth 1 found after first step. The more the mappings, the more the hookings, the
higher this ratio. We expect the time used to compute the graph of hookings to increase with this
ratio. This is confirmed by figure IV.8. As soon as we are out of the case were all final closed
frequent patterns are depth 1 patterns, the hooking graph computation time grows linearly with
the ratio of the number of frequent patterns found at the end of DRYADE by the number of frequent
patterns of depth 1 after first step.

Hookings computation:

As the number of hookings iterations depends on the depth of the closed frequent patterns
to find, we have shown of the curves IV.9, TV.10 and IV.11 the time necessary for hookings as a
function of the average depth of the frequent patterns in the corpus, for the thresholds 15 and 18.
Notice that in most of the curves, the last points for threshold 15 couldn’t be computed: as always,
for a lower threshold the problem gets more difficult, and solving it can take more than the given
time.

All these curves have a sublinear logarithmic aspect, so we can deduce that the complexity
of the hooking step of DRYADE is polynomial on the average depth of the frequent patterns to
discover.

Notice that the lowering that appears for the maximal depth of the curve of figure IV.9 comes
from the fact that deep solutions are obtained only with few labels. Hence, the rightmost point of
figure IV.9 is computed for |E| = 4. With our generation bias, the 1000 trees are identical, so there
is only one frequent pattern to discover, which makes the work easier for DRYADE, hence lower
computation time.
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3.3 Real data study

The Xyleme society kindly gave us a corpus of real XML documents. This corpus consists of
3667 XML documents representing sports news from the french press agency, Agence France Presse
(AFP). 3396 of these documents (92.6 %) satisfy the constraint CNTR and can be used in our
experiments. We can here notice that our constraint is satisfied in a real life corpus, which means
that in some cases in can be realistic. The trees of the corpus have an average depth between 2 and
3, and the average branch factor is between 4 and 5. The number of different labels is 32. So this
experiment is more difficult than our previous experiments, because of the higher branch factor.

The documents follow the same writing guidelines, and 90 % of them have strictly the same
structure. Hence the goal of DRYADE was to find this common structure. For this, we set the
threshold to 3000.

On a 1 Ghz Athlon, it took 19 hours to DRYADE to find the frequent trees. This time can be
decomposed in:

Computation of closed frequent patterns of depth 1 67081 s (18.6 h)
Computation of hooking graph 1592 s (0.4 h)
Hooking iterations 890 s (0.25 h)
Total 69563 s (19.3 h)

So the total time is dominated by the initial step of computation of closed frequent patterns of
depth 1, which is as many runs of ECLAT as there are labels. This very high time can be explained
by the fact that often, the trees of the corpus have a very high branch factor at the biggest depths.
For exemple, some nodes can have more than ten leaves. The saturation by ancestor relationship
between these leaves and their ancestors will produce many pairs of ancestor/descendant labels,
which are the items for ECLAT. And ECLAT is exponential on the number of items.

Furthermore, our implementation is penalized by using ECLAT instead of CHARM, which would
be much faster because CHARM computes directly closed frequent itemsets.

After this step, the hooking graph computation and the frequent pattern building are compar-
atively very fast, even if these steps are the most complex of DRYADE. So this situations differs
from what we have seen in our experiments on randomized data.

We show in figure IV.12 the biggest tree discovered by DRYADE. This tree corresponds to the
common structure of the XML documents of the corpus. We can see that this structure is complex,
with 28 father/son edges.

4 Conclusion

In this experimental study, we have seen that DRYADE was way more efficient than the generalist
approach WARMR. We have studied the effective complexity of DRYADE, which is polynomial on the
input trees number, depends polynomialy on the number of patterns of depth 1 for the computation
of the hooking graph, and on the depth of the solutions to find for performing the hookings.

In a difficult real-life application, DRYADE could find the structure common to 3000 XML docu-
ments, and it’s the computation of frequent patterns of depth 1 that took most of the computation
time.
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Annex

In this annex, we will explain the behavior of the curve of the number of frequent patterns of depth
1, in a corpus of trees of depth 3 whose average branch factor is 1. To simplify, we will suppose
that the trees have a branch factor of 1, so they are like the tree of figure IV.13. We recall that we
have a generation bias, so the set E of labels is split in 4 separate subsets of same size, and each
node of a tree takes its labels in a different subset of E. The choice of the subset depends on the
depth of the node.

1 1 1 1
2 2 3 4 2 3 2
3
4

Figure IV.13: On the left, a tree of the corpus, on the right, different kinds of frequent patterns

The frequent patterns of depth 1 have three different kinds in the corpus: with 3 leaves, 2 leaves
and 1 leaf, as shown in figure IV.13.

So we will compute the expectation of the frequent patterns of each kind for a given set of
labels, the total of the expectations of the three kinds will give the expectation for all the frequent
patterns of depth 1. Our variable will always be z, the number of labels.

To get the expectation of the frequent patterns with 3 leaves, we start by computing the
probability ps(z) that a frequent pattern with three leaves is included in a tree A of the corpus.

A frequent pattern P with tree leaves will be included in a tree of the corpus if it’s root node
has been drawn in the first label subset, and all the leaves labels have been drawn from different
subsets. So it’s possible to make a mapping between P and a tree A of the corpus. Hence:

p3(z) = (4/2)*

For the pattern P to be frequent, it must appear in at least € trees of the corpus. The probability
that a pattern appears in exactly k trees of the corpus is given by the Bernouilli law:

B(k,ps(x)) = CF x ps(@)* x (1 = pa()) ¥

where N is the total number of trees in the corpus. So to have the probability that P is frequent,
we have to sum the probability that P appears ¢, the probability that P appears e+ 1 and so forth.

N

pfrequents(z) = ZB(k,pg(x))
k=e



The expectation of the frequent patterns of depth 1 with three leaves is the product of the
previous probability with the number of frequent patterns with 3 leaves, so:

E5(z) = pfrequents(z) x (@)4

The reasoning is the same for frequent patterns of depth 1 with two leaves and one leaf.
Trivilally,

pa(z) = (4/2)°

N
pfrequents(z) = Z B(k,p2(x))
k=e
and
pi(z) = (4/)°

N
pfrequenti(z) = Z B(k,p1(x))
k=¢

To find the number of patterns with 2 leaves, notice that we must first choose a node of the
target tree on which no mapping will be done (4 choices), then instanciate the labels of the nodes
of the pattern. So:

|

Es(x) = pfrequenta(z) x 4 X (T)3

The same way, for the number of frequent patterns with 1 leaf, we must choose 2 nodes of the
tree among 4, then instanciate the labels of the nodes of the pattern:
E|

E\(z) = pfrequent;(z) x C% x (T)Q

The figure IV.14 represents F1(z) + E2(x) + E3(x), we notice that there are the same two peaks
that in the experiments, that correspond for the right peak to a majority of frequent patterns with
1 leaf, and for the left peak to a majority of frequent patterns with 2 or 3 leaves.



nb of frequent patterns of depth 1

300

250

200

150

100

50

60

T T T

E ()+Ex()+Eg(}) ——

Eq(X) —————--

Ey(X) --------

Eg(X) e
1 e R ] ] I ] ]
10 15 20 25 30 35 40 45 50 55

nb of labels

Figure 1V.14: F;(z) + E2(x) + E3(z)



CHAPTER V

Conclusion

In this thesis,we were interested in the problem of finding frequent trees. Even if generalist approach
like WARMR can be used to solve this problem, we decided to get involved in specialised approaches,
for the sake of efficiency. We have seen by analysing related works that existing methods use
different tree inclusion definitions. The method proposed by Asai et al. uses a tree inclusion
definition preserving the parent relationship, whereas the method proposed by Zaki is more general
and only imposes to preserve the ancestor relationship.

However, these two methods impose that in the discovered frequent trees, the children or de-
scendants have the same ordre than in input trees. The problem of finding frequent trees without
taking into account siblings order hadn’t been addressed so far by a specific approach. This can be
explained by the difficulty of the tree inclusion test in this case: we have seen in chapter II that
this test is NP-complete in the unordered case.

We have presented several solutions for the problem of frequent tree discovery, in the unordered
case. The first of these solutions is the approximate algorithm TREEFINDER, presented in [TRS02].
This algorithm uses thanks to adapted recodings some well known algorithms and techniques, the
discovery of frequent itemsets in the transactional case, and the Least General Generalization
computation. Any improvement on these techniques thus directly benefits to TREEFINDER. We
have seen that the TREEFINDER algorithm is sound, but that in the general case it isn’t complete.
Our experimental study has shown that practically, as long as the overlap rate between the pair or
ancestor/descendant labels of the frequent trees to discover was not too high, the completeness of the
results given by TREEFINDER was reasonably good. It is another important point of TREEFINDER
and of its experimental study: we have shown that our approximate algorithm could in many cases
give satisfactory results. For real applications where speed is more important than approximation
quality, an algorithm like TREEFINDER can then be successfully used, as long as the input data
doesn’t lead to a too important completeness loss. It means that the overlap rate between the
ancestor/descendant pairs of labels of the frequent trees musn’t be too high.

After that, we have presented in the chapter III the algorithms DRYAL and DRYADE. These
algorithms compute frequent patterns, i.e. trees where no nodes has two children with the same
label. The paper [DRR 03] has shown that this restriction on the shape of trees didn’t prevented
to find interesting tree structures to query XML documents. The algorithms DRYAL and DRYADE
make use of the tree structure of data in an innovative approach by building gradually the set of
solutions, by successive hookings of the frequent patterns of depth 1. The frequency computations
of candidates make an intensive use of the vertical methods for finding frequent itemsets, and thus
avoid costly tree inclusion tests. We have detailed the DRYAL and DRYADE algorithms, and proven



their soundness and completeness in the general case. We have then realised an experimental study
with our implementation of DRYADE, in the chapter IV. This study first shown that DRYADE was
more efficient than the generalist algorithm WARMR, with a performance gain of several orders
of magnitude in execution time. This results justifies a posteriori the approached we followed,
i.e. making use of the specificities of tree structures. Moreover, the significative performance
improvement comes from the use of the closure constraint, inspired from CLOSED and CHARM.
An empiric study of the complexity of DRYADE has been presented, and showed the good scaleup
capacity of DRYADE. Last, the experimentation on complex real data shown that DRYADE could
be used in real applications.

Our main contribution, concretised by the DRYAL and DRYADE algorithms, can be split in two
points.

First, the DRYAL and DRYADE algorithms are based on the intensive used of vertical approaches
for finding closed frequent itemsets. These approaches ensure not only the initialisation step of
DRYADE, but are also used in the algorithm for the choices of the hookings to do and the choices of
the leaves to suppress. The interest of reusing these algorithms is twofold: on one hand, it’s a well
known framework, which can ease the comprehension and future improvement of our algorithms.
On the other hand, these algorithms are the topic of a lot of works, hence any improvement made
to them can be directly applied to DRYAL and DRYADE. So by improving propositional frequent
itemset discovery, frequent pattern discovery is automatically improved as well. It seems very
important to us.

Second, we have defined for the DRYADE algorithm the concept of closed frequent pattern.
We have thus extended the concept of closed frequent itemset to the frequent patterns. We have
observed in our experiments that the restriction to closed frequent patterns allowed a very important
perfomance gain. We hope that the use of the closure constraint will benefit to all the works on
structured data mining, our approach illustrating on both theoretical and practical bases the utility
of this constraint.

Perspectives

The presented works lead to several research perspectives. In the short-term, an improvement
of our current DRYADE implementation seems necessary, in order to avoid the restrictions seen
in the chapter IV. It will be interesting to measure the performance gain brought by this new
implementation. We also wish to study some optimisations for DRYADE, especially in the update of
the hooking graph. A judicious use of some closure properties could allow an anticipate elimination
of some useless arcs, avoiding to generate some patterns that would become redundant later.

In the medium-term, it is clear that DRYADE is intended to be integrated in a real data mining
process. The kind of application considered would be to start from an heterogeneous collection of
XML documents, in such a collection the queries are given with a query language like X-Query. But
because of the heterogeneity of the collection, it can be very difficult for the user to know which
tags to use for his/her query. Here DRYADE can be very usefull: an execution of DRYADE on the
collection of XML documents will give frequent patterns, and we will be sure that these patterns
appear at last € in the collection. These patterns can be used as typical queries by the user, an
inform him/her on what can be found in the collection. A presentation of frequent patterns with
forms can be provided to ease their handling by the user (figure V.1).

In this figure, a frequent pattern about used car ads is found. Presented as a form, the user
only has to fill the value he/she is interested in, and the query will be issued with X-Query.

The study of a real problem will allow our approach to focus on significative problems, and to
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propose extensions favoring the pertinent compromise ease of use/utility.

In the long run, several perspectives are opened. As we said before, a first perspective is to
extend the discovery of closed frequent structures to sequences and graphs. This could allow an
efficiency improvement on these problems, and to tackle new kinds of applications. For example
for graph data, there are many works with chemical moleculas databases ([[WMO00], [MS03]), and
analysing them with a closed approach would certainly be very interesting.

Another perspective is to relax the constraint on the shape of trees discovered by DRYADE, so it
doesn’t anymore discovers frequent patterns but frequent trees, that can have for each node several
children with the same label. In these conditions the cost of APRIORI-like approaches increases a
lot: we then have to discover how to stay as efficient as possible despite the combinatorial explosion.

A last, more theoretical perspective is to define, as we have done for closed frequent patterns,
the notion of maximal frequent pattern, and to modify DRYADE to compute such patterns. An
exciting perspective would then be to discover the linking between frequent / frequent closed /
frequent maximal itemset and frequent / frequent closed / frequent maximal patterns. This inves-
tigation would be interesting to do from a point of view of convergence between algorithms and for
theoretical properties. Furthermore, an experimental comparison of the performance differences
between algorithms on propositional data (classical, closed, maximal) and the correponding algo-
rithms on structured data would be capital. We could then learn if for frequent structures, it’s
more interesting to use closed or maximal approaches than for propositional data. An even longer
run goal would be to propose a general framework about frequent pattern discovery, whatever
there structure. This is an instanciation for structured data (trees and graphs), with closure and
maximality constraints, of the general framework defined in [MT97].
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