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About b-colouring of regular graphs

Amine El Sahili and Mekkia Kouider

Abstract. Is the b-chromatic number of a d-regular graph of
girth 5 equal to d + 1? We study this problem by giving some
partial answers.
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1. Introduction

A b-coloring of a graph G is a proper coloring of the vertices of G
such that there exists a vertex in each color class joined to at least a
vertex in each other color class, such a vertex is called a dominating
vertex. The b-chromatic number of a graph G, denoted by b(G), is the
maximal integer k such that G may have a b-coloring by k colors. This
parameter has been defined by Irving and Manlove [2]. They proved
that determining b(G) for an arbitrary graph G is an NP-complete
problem.

For a given graph G, it may be easily remarked that χ(G) ≤ b(G) ≤
∆(G) + 1.

In [5]) Hoang and Kouider characterize all bipartite graphs G and
all P4-sparse graphs G such that each induced subgraph H of G satisfies
b(H) = χ(H), where χ(H) is the chromatic number of H. They also
prove that every 2K2-free and P5-free graph G has b(G) = χ(G).

An important problem is to characterize those graphs G such that
b(G) = ∆(G) + 1. If we are limited to regular graphs, Kratochvil et
al. proved in [3] that for a d-regular graph G with at least d4 vertices,
b(G) = d +1. In [4] one of us proved that for every graph G with girth
at least 6, b(G) is at least the minimum degree of the graph, and if this
graph is d-regular then b(G) = d + 1.

Two examples show that the result is not extendable to every reg-
ular graph. The simpler one is the cycle C4, we have b(C4) = 2 < 3.
An other example containing triangles is the graph G consisting of two
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triangles x1x2x3 and y1y2y3 such that xiyi is an edge 1 ≤ i ≤ 3. It is
not difficult to show that b(G) < 4. If cycles of order less than or equal
4 are not allowed, then we are leaded to study regular graphs of girth
5, the subject of this note.
By putting a supplementary condition, we do a step in the hoped di-
rection.

Theorem 1. Let G be a d-regular graph with girth 5 and containing

no cycles of order 6. Then the b-chromatic number of G is d + 1.

Proposition 1. Let G be a d-regular graph. If V (G) can be de-

composed into d+1 stables S1, S2, · · · , Sd+1 such that for each i, j there

is a perfect matching between Si and Sj, then b(G) = d + 1.

By forbidding P7 we get a lower bound for arbitrary graphs.

Proposition 2. For a P7-free graph G of girth 5 we have b(G) >
δ − 3

4
where δ is minimal degree of G.

2. Proof of Theorem1

The following proposition on regular graphs of girth greater than 5 was
proved in [4].

Proposition 3. Any d-regular graph with girth 6 has a b-chromatic

number equal to d + 1

Proof. Consider a vertex v and its d neighbors v1, v2, · · · , vd. We
start our coloring by giving v the color d+1 and each vertex vi the color
i. v is then a dominating vertex. Note that no neighbor of vs other
than v is equal nor joined to a neighbor of vt where 1 ≤ s < t ≤ d.
Then neighborhoods of the vertices vi can be colored in such a way
that vi becomes a dominating vertex for all i, 1 ≤ i ≤ d. We may easily
complete to obtain a b-coloring of G by d + 1 colors �

Lemma 1. Let f be a non constant mapping from E into F where

E and F are two finite sets such that |E| = |F | ≥ 2. Then there is a

bijection g from E to F such that f(x) 6= g(x) for all x in E.

Proof. We argue by induction on the cardinal of the set E. If
|E| = 2, then a non constant mapping is a bijection. Simply g will be
the other possible bijection from E to F . Suppose that the property
holds for n and let E be a set containing n + 1 elements. Set E =
{x1, x2, · · · , xn+1} , F = {y1, y2, · · · , yn+1} . If f is a bijection, say for
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example that f(xi) = yi, 1 ≤ i ≤ n + 1. Then the bijection g defined
by f(xi) = yi+1, 1 ≤ i ≤ n, and f(xn+1) = y1, is a hoped bijection.
Otherwise, there is an element in F which is not in f(E). We may
suppose that yn+1 is such a point. Consider the restriction of f on
E ′ = {x1, x2, · · · , xn} , it is a mapping from E ′ to F ′ = {y1, y2, · · · , yn} .
If this mapping is constant, that is there exists s ∈ [1, n] such that
f(xi) = ys, 1 ≤ i ≤ n. then f(xn+1) 6= ys since f is not constant on
E. Consider any bijection g from E ′ to F\{ys} and extend g to E by
putting g(xn+1) = ys. Otherwise we apply induction to get a bijection
g from E ′ to F ′ verifying f(xi) 6= g(xi), 1 ≤ i ≤ n, We extend g to E by
putting g(xn+1) = yn+1. A convenient bijection is then constructed. �

Proof of the theorem. The cases d = 1, 2 are easily checked.
So we prove the theorem for d ≥ 3. Consider a vertex v and its d
neighbors v1, v2, · · · , vd. We start our coloring by giving v the color
d+1 and each vertex vi the color i. The vertex v is then a dominating
vertex. Now we will color the neighborhoods of the vertices vi in such
a way that vi becomes a dominating vertex for all i, 1 ≤ i ≤ d. The
d − 1 neighbors of v1 other than v are taken colors 2, · · · , d. Suppose
that all the neighbors of v1, · · · , vk−1, k − 1 < d are colored such that
vi is a dominating vertex for all i, 1 ≤ i ≤ k − 1, and let us color the
neighbors of vk. First we remark that no colored vertex is a neighbor
of vk other than v; and, no two distinct colored vertices, different from
v, are joined to the same vertex in the neighborhood of vk since in all
these cases, we have either a cycle of order less than 5 or a cycle of
order 6. Let E be the set of all the neighbors of vk other than v and let
F be the set of the colors i such that 1 ≤ i ≤ d and i 6= k. We define
from E to F the mapping as follows:

If u ∈ E is joined to a vertex of color i ∈ F, then put f(u) = i. We
give arbitrary images of non used colors in F to the other vertices in
such a way that f is not a constant mapping. It will be not so even
if all the vertices in E are joined to colored one. In fact, if f(u) =
s 6= k for all u ∈ E, then... k = d and vi has a neighbor of color
s for all i ∈ {1, · · · , d − 1} since two distinct neighbors of vi have
always two distinct colors. In particular vs has a neighbor of color s,
a contradiction. Hence may apply the lemma to construct a bijection
g from E to F such that f(u) 6= g(u) for all u ∈ E. We color the
vertices in E by putting c(u) = g(u) for all u ∈ E. Once all the
neighbors of vi are colored we complete by giving to each other vertex
a convenient color. It may be easily verified that the obtained coloring
is a b-coloring. So b(G) = d + 1 �
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3. Proof of Proposition 2

Proof. Suppose to the contrary that b(G) = m ≤
δ − 3

4
and con-

sider an m−coloration with m dominating vertices x1, x2, · · · , xm. Set
X = {x1, x2, · · · , xm}. For all 1 ≤ t ≤ m, t 6= i let yit be a vertex of
color t in N(xi). Set Yt = {yit, 1 ≤ i ≤ m}. We will introduce a new
color m+1. For every x ∈ V (G), we define the following sets: S1(x) is a
maximal subset of N(x) containing N(x)∩X in which each two vertices
have different colors, S2(x) = {y ∈ N(x), (N(y) − {x}) ∩ X 6= φ},

S(x, t) = {y ∈ N(x), N(y) ∩ Yt 6= φ}. First remark that, as the
girth is at least 5, each one of these sets contains at most m elements.

Since m ≤
δ − 3

4
, then x1 has a neighbor which is not in any one of

those sets relative to x1, we give the color m + 1 to this neighbor. By
supposing that at a step i ≤ m the set N(xj) j < i contains exactly
one vertex of color m+1, we color a neighbor of xi as we have done for
x1. We get an (m + 1)-coloring in which xi, 1 ≤ i ≤ m, is a dominating
vertex such that N(xi) contains exactly one vertex of color m + 1. Let
S3(x) = {y ∈ N(x), N(y) contains a vertex of color m+1}, We consider
a vertex x of color m+1 such that |S1(x)| is maximum. If |S1(x)| = m
then we get a dominating vertex of the color m + 1; this contradicts
the definition of b(G). Then we suppose that there is a color t not used

by a vertex in S1(x), since m ≤
δ − 3

4
then x has at least 3 neighbors

y1, y2 and y3 which are not in any one of the sets Si(x) or S(x, t). The
vertex y1 is joined to a vertex z of color t since otherwise we give to it
the color t which is a contradiction. Suppose that the vertex z is not
joined to a vertex of color m+1. If we have a missing color j 6= m+1 in
N(z)−{y1}, then we give the color j to z and similarly we may change
the color of all the neighbors of y1 having the color t and we are leaded
to the first case. Else we give the color m + 1 to z, t to y1. We get a
dominating vertex of the color m+1, a contradiction. Then z is joined
to a vertex w of color m + 1. By definition, the vertex w is joined to a
dominating vertex xi. Let j ∈ {2, 3} be such that xiyj /∈ E(G). It can
be easily verified that there is no edge between two non consecutive
vertices on the path yjxy1zwxiyit. Thus G contains an induced path
P7. �
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4. Proof of Proposition 1

An other parameter of graphs closed to the b-coloring which is deeply
investigated is the chromatic number of the square graph, see for in-
stance [1] and [6]. Given a graph G, the square of G is the graph
G2 obtained by adding edges to G between any two vertices of G of
distance 2. Clearly we may verify that χ(G2) ≥ ∆(G) + 1. If we
have the equality in the case of a d-regular graph, we get obviously
b(G) = d + 1. We will establish this equality under some particular
conditions. First we give the following characterization of a d-regular
graph G with χ(G2) = d + 1.

Proposition 4. Let G be a d-regular graph. Then χ(G2) = d+1 if

and only if V (G) can be decomposed into d + 1 stables S1, S2, · · · , Sd+1

such that for each i, j there is a perfect matching between Si and Sj.

Proof. For the necessary condition, consider a (d + 1)-coloring
of G2 and let S1, S2, · · · , Sd+1 be the stables defined be the colors.
For any two of them, say Si and Sj, it is sufficient to remark that
|N(xi) ∩ Sj| = |N(xj) ∩ Si| = 1 for all xi ∈ Si and xj ∈ Sj. For the
sufficient condition, give color i to vertices in Si, 1 ≤ i ≤ d+1. we have
|N(xi) ∩ Sj| ≥ 1 for all i 6= j with xi ∈ Si. If |N(xi) ∩ Sj| ≥ 2 then
d(xi) > d + 1, a contradiction. We get a (d + 1)-coloring of G2. �

The proposition 1 is then a corollary.
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