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Abstract

Given a graph G and an edge coloring C of G, an alternating cycle of G is such
a cycle of G in which any adjacent edges have distinct colors. Let dc(v), named the
color degree of a vertex v, be defined as the maximum number of edges incident
with v, that have distinct colors. In this paper, some color degree conditions for the
existence of alternating cycles of length 3 or 4 are obtained. We also give a bound
on the length of a maximum alternating cycle under conditions of color degrees.
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1 Introduction and notation

We use [4] for terminology and notations not defined here. Let G = (V, E) be a graph.
An edge-coloring of G is a function C : E → N(N is the set of nonnegative integers). If
G is assigned such a coloring C, then we say that G is an edge-colored graph, or simply
colored graph. Denote by (G,C) the graph G together with the coloring C and by C(e)
the color of the edge e ∈ E. For a subgraph H of G, let C(H) = {C(e) : e ∈ E(H)} and
c(H) = |C(H)|. For a color i ∈ C(H), let iH = |{e : C(e) = i and e ∈ E(H)}| and say
that color i appears iH times in H. For an edge colored graph G, if c(G) = c, we call it
a c-edge colored graph.

For a vertex v ∈ V (G), a color neighbourhood of v is defined as a set T ⊆ N(v) such
that the colors of the edges between v and T are distinct pairwise. A maximum color
neighborhood N c(v) of v is a color neighborhood of v with maximum size. And we denote
dc(v) = |N c(v)| and call it the color degree of v.

If P = v1v2 · · · vp is a path, we let P [vi, vj] be the subpath vivi+1 · · · vj, and P−[vi, vj] =
vjvj−1 · · · vi.

A path or cycle in an edge-colored graph is called alternating if any adjacent edges
have distinct colors. Besides a number of applications in graph theory and algorithms,
the concept of alternating paths and cycles, appears in various other fields: genetics (cf.
[8, 9, 10]), social sciences (cf.[7]). A good resource on alternating paths and cycles is the
survey paper [2] by J. Bang-Jensen and G. Gutin.

Grossman and Häggkvist[11] were the first to study the problem of the existence of
the alternating cycles in c-edge colored graphs. They proved Theorem 1 below in the case
c = 2. The case c ≥ 3 was proved by Yeo [14]. Let v be a cut vertex in an edge colored
graph G. We say that v separates colors if no component of G − v is joined to v by at
least two edges of different colors.

Theorem 1 (Grossman and Häggkvist [11], and Yeo [14]). Let G be an c-edge colored
graph, c ≥ 2, such that every vertex of G is incident with at least two edges of different
colors. Then either G has a cut vertex separating colors, or G has an alternating cycle.

Consider the edge colored complete graph, we use the notation Kc
n to denote a complete

graph on n vertices, each edge of which is colored by a color from the set {1, 2, · · · , c}.
And ∆(Kc

n) is the maximum number of edges of the same color adjacent to a vertex of
Kc

n. And we have the following conjecture due to B. Bollobás and P. Erdős [3].

Conjecture 1 (B. Bollobás and P. Erdős [3]). If ∆(Kc
n) < bn

2
c, then Kc

n contains a
Hamiltonian alternating cycle.

B. Bollobás and P. Erdős managed to prove that ∆(Kc
n) < n

69
implies the existence

of a Hamiltonian alternating cycle in Kc
n. This result was improved by C.C. Chen and
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D.E. Daykin [6] to ∆(Kc
n) < n

17
and by J. Shearer [13] to ∆(Kc

n) < n
7
. So far the best

asymptotic estimate was obtained by Alon and Gutin [1].

Theorem 2(Alon and Gutin[1]). For every ε > 0 there exists an no = n0(ε) so that for
every n > no, Kc

n satisfying ∆(Kc
n) ≤ (1− 1√

2
− ε)n has a Hamiltonian alternating cycle.

2 Main results

We study some color degree condition for the existence of the alternating cycles, in par-
ticular the shortest alternating cycles and the longest alternating cycles.

We begin with a study of the existence of an alternating cycle with good property.
Under color degree conditions, we have

Theorem 3. Let G be a colored graph with order n ≥ 3. If dc(v) ≥ n+1
3

for every
v ∈ V (G), then G has an alternating cycle AC such that each color in C(AC) appears at
most two times in AC.

Moreover, for the existence of an alternating cycle, we have the following proposition.

Proposition. For any integer i, there exists a colored graph Gi such that dc(v) ≥ i, for
every vertex v of Gi, and Gi has no alternating cycles.

To show the above proposition, we construct the following example by induction.

Let G1 be an edge e with color C(e) = 1. Given Gi, we construct Gi+1 as follows.
First, make (i+1) copies of Gi and denote them by G1

i , G
2
i , · · · , Gi+1

i . Let {c1, c2, · · · , ci+1}
be the colors such that {c1, c2, · · · , ci+1} ∩ C(Gi) = φ. Add a new vertex vi+1. For each
Gj

i , 1 ≤ j ≤ i + 1, join vi+1 to each vertex of Gj
i , then color these edges with color cj.

Then Gi is a colored graph such that dc(v) ≥ i, for every vertex v of Gi, and clearly Gi

contains no alternating cycles.

For the shortest alternating cycles, we get result on alternating triangles or alternating
quadrilaterals with minimum color degree conditions.

Theorem 4. Let G be a colored graph with order n ≥ 3. If dc(v) ≥ 37n−17
75

for every v ∈
V (G), then G contains at least one alternating triangle or one alternating quadrilateral.

We also give a bound for the longest alternating cycles.

Theorem 5. Let G be a colored graph with order n. If dc(v) ≥ d ≥ n
2
, for every vertex

of v ∈ V (G), then G has an alternating cycle with length at least dd
2
e+ 1.

In fact, we think that the bound in Theorem 5 is not sharp, and we propose the
following conjecture.

3



Conjecture 2. Let G be a colored graph with order n. If dc(v) ≥ n
2
, for every vertex of

v ∈ V (G), then G has a Hamiltonian alternating cycle.

We have the following example to show that if the above conjecture is true, it would
be best possible. For any integer m, let Km, K

′
m+1 be two edge-proper-colored complete

graphs with order m,m + 1, respectively. For every vertex u ∈ Km and every vertex
u
′ ∈ K

′
m+1, add the edges uu

′
and let C(uu

′
) = c0, where c0 /∈ C(Km) ∪ C(K

′
m+1). The

new colored graph is denoted by B. Clearly, |V (B)| = n = 2m + 1. Moreover for every
vertex v of B, it holds that dc(v) ≥ m = n−1

2
, and B contains no Hamiltonian alternating

cycle.

The proofs of the main results in Theorem 3, 4, 5 will be given in Section 3.

3 Proofs of the main results

Proof of Theorem 4.

By contradiction. Suppose that G is a colored graph such that dc(v) ≥ 37n−17
75

for every
vertex v of G, and G contains neither alternating triangles nor alternating quadrilaterals.

For an edge uv, let N c
1(u), N c

1(v) denote a maximum color neighborhood of u, v, re-
spectively, such that v ∈ N c

1(u) and u ∈ N c
1(v). Let N c(u, v) denote N c

1(u) ∪N c
1(v) such

|N c
1(u) ∪ N c

1(v)| is maximum. And choose an edge uv ∈ E(G) such that |N c(u, v)| is
maximum.

Assume that N c
1(u) = {v, u1, u2, · · · , us} and N c

1(v)\N c
1(u) = {u, v1, v2, · · · , vt}, in

which s = dc(u) − 1. Let X = {u1, · · · , us, v1, · · · , vt}. Note that |N c(u, v)| = s + t + 2.
Consider the graph G[X], and we have the following lemma.

Lemma 1.1. Suppose e ∈ E(G[X]), then the following hold:
(i) If e = uiuj(1 ≤ i, j ≤ s), then C(e) ∈ {C(uui), C(uuj)}.
(ii) If e = vivj(1 ≤ i, j ≤ t), then C(e) ∈ {C(vvi), C(vvj)}.
(iii) If e = uivj(1 ≤ i ≤ s, 1 ≤ j ≤ t) and C(uui) 6= C(vvj), then C(e) ∈ {C(uui), C(vvj)}.
Proof. Clearly (i) and (ii) hold, otherwise we can obtain an alternating triangle, which
gets a contradiction.

If (iii) does not hold, then there exists an edge e = uivj (1 ≤ i ≤ s, 1 ≤ j ≤ t) such
that C(uui) 6= C(vvj) and C(e) /∈ {C(uui), C(vvj)}. Since v, ui ∈ N c

1(u), then C(uui) 6=
C(uv). Similarly, we obtain that C(vvj) 6= C(uv). Then we can get an alternating
quadrilateral : uvvjuiu, a contradiction. 2

Construct a digraph as follows.

(1). In graph G[X], do the following operation: deleting the edges e = uivj if C(uui) =
C(vvj), 1 ≤ i ≤ s and 1 ≤ j ≤ t. (Note that if C(uui) = C(vvj) and uivj ∈ E(G[X]),
then C(uivj) = C(uui) = C(vvj)). After the operation, the graph is named G1[X].
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(2). Then give an orientation of G1[X]: For an edge xy ∈ E(G1[X]), if C(xy) = C(uy)
or C(xy) = C(vy), then the orientation of xy is from x to y. Otherwise, by Lemma 1.1,
C(xy) = C(ux) or C(xy) = C(vx), then the orientation of xy is from y to x.

After the orientation, the digraph is denoted by D1. For any vertex w ∈ V (D1),
let N+

D1
(w) denote the outneighbors of w in D1 and d+

D1
(w) = |N+

D1
(w)|. Let G0 =

G[X ∪ {u, v}].

Lemma 1.2. If there exists a directed cycle
−→
Cp in D1, then Cp is an alternating cycle in

G, moreover each color in C(Cp) appears at most two times in Cp.

Proof. Firstly, we will prove that Cp is alternating. Assume that xy and yz are adjacent

edges of Cp, and furthermore, in
−→
Cp, the orientations of xy, yz are from x to y, from y

to z. By the orientation rule, we conclude that C(xy) = C(uy) or C(xy) = C(vy) and
C(yz) = C(uz) or C(yz) = C(vz).

If C(xy) = C(uy) and C(yz) = C(uz) or C(xy) = C(vy) and C(yz) = C(vz), then
by the definition of the maximum color neighborhood, it holds that C(uy) 6= C(uz) and
C(vy) 6= C(vz), Thus we have that C(xy) 6= C(yz).

Otherwise, without loss of generality, assume that C(xy) = C(uy) and C(yz) = C(vz).
Then by (1) and Lemma 1.1(iii), we have that C(uy) 6= C(vz). It follows that C(xy) 6=
C(yz).

Thus Cp is an alternating cycle. Moreover by the definition of N c(u, v), we can con-
clude that each color in C(Cp) appears at most two times in Cp. 2

The girth of a digraph D containing directed cycles is the length of the smallest directed
cycle in D. Since G has neither alternating triangles nor alternating quadrilaterals, it
follows that the girth of D1 is at least 5.

Lemma 1.3[5]. Let D be a digraph on m vertices with girth 5. Then δ+ < 9(m−1)
28

.

Let α = 9
28

. By Lemma 1.3, there is a vertex w of D1 such that d+
D1

(w) < α(|V (D1)|−
1) = α(s + t − 1) = α(dc(u) + t − 2). Without loss of generality, assume that w ∈
N c

1(u). Denote a maximum color neighborhood of w in G0 by N c
G0

(w). Then it holds that
|N c

G0
(w)| = |N+

D1
(w)|+ |v|(or|u|) = d+

D1
(w) + 1. It follows that

|N c(w)\(X ∪ {u, v})| ≥ dc(w)− |N c
G0

(w)| > dc(w)− α(dc(u) + t− 2)− 1.

If dc(w)− α(dc(u) + t− 2)− 1 > t, then consider the edge uw and it holds that

|N c(u,w)| ≥ |{v, u1, u2, · · · , us}|+ |N c(w)\(X ∪ {u, v})|+ |w|
> s + t + 2

= |N c(u, v)|,

a contradiction with the choice of uv.
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Then dc(w)−α(dc(u) + t− 2)− 1 ≤ t, that is t ≥ dc(w)
1+α

− αdc(u)
1+α

+ 2α−1
1+α

. It follows that

n ≥ |X|+ |u|+ |v|+ |N c(w)\(X ∪ {u, v})|
> dc(u) + t− 1 + 2 + dc(w)− α(dc(u) + t− 2)− 1

≥ 1− α

1 + α
dc(u) +

2

1 + α
dc(w) +

5α− 1

1 + α
.

Since dc(v) ≥ 37n−17
75

for every vertex v ∈ V (G) and α = 9
28

, the above inequality is

n >
3− α

1 + α

37n− 17

75
+

5α− 1

1 + α
≥ n.

This contradiction completes the proof of Theorem 4. 2

Proof of Theorem 3.

We use the same notations and same technique as in the proof of Theorem 4, and omit
some details. By contradiction. Suppose that G is a colored graph such that dc(v) ≥ n+1

3
,

for every vertex v of G, and G contains no alternating cycles with the prescribed property.
Similarly, choose an edge uv ∈ E(G) such that N c(u, v) is maximum. Assume that

N c(u, v) = N c
1(u) ∪ N c

1(v) = X ∪ {u, v}. After the deleting and orienting operations in
G[X] by the same rule as above, the digraph is denoted by D1. By Lemma 1.2, there
exist no directed cycles in D1. And we have the following fact.

Fact 2.4. Every simple m-vertex digraph with minimum out-degree at least 1 has a
directed cycle.

By Fact 2.4, there is a vertex w such that d+
D1

(w) = 0. Without loss of generality,
assume that w1 ∈ N c

1(u). Let N c(w) be a maximum color neighbor of w1 in G, then it
holds that|N c(w1)\(X ∪ {u, v})| ≥ dc(w) − 1. Then it follows that dc(w) − 1 < t by the
choice of the edge uv. It follows that

n ≥ |X|+ |u|+ |v|+ |N c(w)\(x ∪ {u, v})|
≥ dc(u) + t− 1 + 2 + dc(w)− 1

> dc(u) + 2dc(w)− 1

≥ 3(
n + 1

3
)− 1 = n

This contradiction completes the proof of Theorem 3. 2

Proof of Theorem 5.

If n = 3, the conclusion holds clearly. So we assume that n ≥ 4.
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By contradiction. Otherwise, let P = v1v2 · · · vl be an alternating path of G such that
|P | is maximum. Then choose a maximum color neighborhood N c(v1) of v1 such that
v2 ∈ N c(v1). By the maximum of |P |, we have N c(v1) ∈ V (P ). It follows that l ≥ d + 1,
since |N c(v1)| = dc(v) ≥ d. Choose vs satisfying the followings:

R1. vs ∈ N c(v1).
R2. s ≥ dd

2
e+ 1.

R3. subject to R1, R2, s is minimum.

Since n ≥ 4 and d ≥ n
2
, we can deduce that s < l.

Lemma 3.1. If vi ∈ N c(v1) and i ≥ s, then C(vivi+1) 6= C(v1vi).

Proof. Otherwise, there exists i ≥ s such that C(vivi+1) = C(v1vi). Since P is an
alternating path, C(vi−1vi) 6= C(vivi+1), thus, P [v1, vi]viv1 is an alternating cycle with
length i ≥ s ≥ dd

2
e+ 1, a contradiction. 2

Now choose a maximum color neighborhood of N c(vl) of vl such that vl−1 ∈ N c(vl).
Similarly, we conclude that N c(vl) ∈ V (P ). Then choose t satisfying the followings:

R
′
1. vt ∈ N c(vl).

R
′
2. l − t ≥ dd

2
e.

R
′
3. subject to R

′
1, R

′
2, t is maximum.

Similarly, it holds that t > 1. And we have the following lemmas.

Lemma 3.2. If vi ∈ N c(vl) and i ≤ t, then C(vi−1vi) 6= C(vivl).

Proof. Otherwise, as in the proof of Lemma 3.1, we can get an alternating cycle with
length at least dd

2
e+ 1, a contradiction. 2

Lemma 3.3. s < t.

Proof. Otherwise, we have that s ≥ t. If s > t, then AC0 = v1vsP [vs, vl]vlvtP
−[vt, v1] is

an alternating cycle. And |AC0| = |P [vs, vl]|+ |P [v1, vt]| ≥ 2(d−dd
2
e+ 1) = 2(bd

2
c+ 1) =

2bd
2
c+ 2 > dd

2
e+ 1, a contradiction.

So we assume that s = t. If there exists vj ∈ N c(v1) such that s + 1 ≤ j ≤ l − 1,
then there is an alternating cycle AC1 = v1vjP [vj, vl]vlvsP

−[vs, v1] with length |AC1| ≥
2 + |P [v1, vs]| ≥ 3+ dd

2
e, which gives a contradiction. Similarly, if there exists vj ∈ N c(vl)

such that 2 ≤ j ≤ s − 1, we obtain an alternating cycle v1vsP [vs, vl]vlvjP
−[vj, v1] with

length 3 + dd
2
e, which also get a contradiction.

Thus we can conclude that vj /∈ N c(v1) if s + 1 ≤ j ≤ l − 1 and vj /∈ N c(vl) if
2 ≤ j ≤ s − 1. On the other hand, by R3 it holds that |V (P [vs+1, vl]) ∩ N c(v1)| ≥
d − dd

2
e = bd

2
c ≥ 1. Clearly vl ∈ N c(v1). Similarly, we have that v1 ∈ N c(vl). (Note

that it holds that d = 2, 3). That is, C(v1vl) 6= C(v1v2) and C(v1vl) 6= C(vl−1vl). Then
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P [v1, vl]vlv1 is an alternating cycle with length at least l ≥ d+1 > dd
2
e+1, a contradiction.

2

Lemma 3.4. For 2 ≤ j ≤ s− 1, vj /∈ N c(vl); And for t + 1 ≤ j ≤ l − 1, vj /∈ N c(v1).

Proof. Without loss of generality, we only prove the first part. Otherwise, there exists
vj ∈ N c(vl) such that 2 ≤ j ≤ s − 1. Clearly, j ≤ t, thus by Lemma 3.2 we have that
C(vj−1vj) 6= C(vjvl). Then we get an alternating cycle AC2 = v1vsP [vs, vl]vlvjP

−[vj, v1].
And it holds that |AC2| ≥ |P [vs, vl]|+ 2 ≥ bd

2
c+ 2 ≥ dd

2
e+ 1, a contradiction. 2

Denote N c(v1) ∩ V (P [vs, vt]), N c(vl) ∩ V (P [vs, vt]) by A,B respectively.

Lemma 3.5. |A|+ |B| ≥ 2bd
2
c+ 1.

Proof. By R1, |N c(v1)∩ V (P [vs, vl])| ≥ d− (|P [v1, vs−1]| − 1) ≥ d− (dd
2
e − 1) = bd

2
c+ 1.

Then by Lemma 3.4, we obtain that N c(v1)∩V (P [vs, vl]) = N c(v1)∩(V (P [vs, vt])∪{vl}) =
A ∪ (N c(v1) ∩ {vl}). It follows that |A| ≥ bd

2
c + 1 − |N c(v1) ∩ {vl}|. Similarly, we can

obtain that |B| ≥ bd
2
c+1−|N c(vl)∩{v1}|. Then |A|+ |B| ≥ 2bd

2
c+2− (|N c(v1)∩{vl}|+

|N c(vl) ∩ {v1}|).
If |N c(v1) ∩ {vl}|+ |N c(vl) ∩ {v1}| = 2, this means that vl ∈ N c(v1) and v1 ∈ N c(vl).

Thus, by the definition of a maximum color neighborhood, it holds that C(vlvl) 6= C(v1v2)
and C(v1vl) 6= C(vl−1vl). Then P [v1, vl]vlv1 is an alternating cycle with length l ≥ d+1 >
dd

2
e + 1, a contradiction. Thus it holds that |N c(v1) ∩ {vl}| + |N c(vl) ∩ {v1}| ≤ 1, then

|A|+ |B| ≥ 2bd
2
c+ 1. 2

Now we completes the proof as follows. We have that |V (P [vs, vt])| ≤ n−|V (P [v1, vs−1])|−
|V (P [vt+1, vl])| ≤ n − dd

2
e − dd

2
e ≤ 2d − 2dd

2
e ≤ 2bd

2
c. And by Lemma 3.5, |N c(v1) ∩

V (P [vs, vt])| + |N c(vl) ∩ V (P [vs, vt])| = |A| + |B| ≥ 2bd
2
c + 1, then it follows that there

exists vj (s+1 ≤ j ≤ t) such that vj ∈ N c(v1) and vj−1 ∈ N c(vl). So we get an alternating
cycle v1vjP [vj, vl]vlvj−1P

−[vj−1, v1] with length l ≥ |P [v1, vs]| ≥ l ≥ d + 1 ≥ dd
2
e + 1, a

contradiction. This completes the proof.
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