
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

UIMARKS : QUICK GRAPHICAL
INTERACTION WITH SPECIFIC TARGETS

ROUSSEL N / CHAPUIS O

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

06/2009

Rapport de Recherche N° 1520

UIMarks: Quick Graphical Interaction with Specific Targets

Nicolas Roussel1,2 and Olivier Chapuis1,2

1LRI - Univ. Paris-Sud & CNRS, 2INRIA
Orsay, France

{roussel, chapuis}@lri.fr

Figure 1: Entering the UIMarks mode (A→ B), selecting the top mark (C), activating this mark, which double-clicks and sends
the cursor back to the entering point (C→ D).

ABSTRACT
In this note we present UIMarks, a novel system that lets
users specify on-screen targets and associated actions by
means of graphical marks. UIMarks supplements traditional
pointing by providing users with an alternative mode in which
they can quickly create, select, configure, activate and delete
marks. Actions associated to these marks can range from
basic point-and-click interactions to the execution of com-
plex action sequences. UIMarks has been implemented on
two different platforms, Metisse and OS X.

ACM Classification: H.5.2 [Information interfaces and pre-
sentation]: User interfaces - Graphical user interfaces.
General terms: Design, Human Factors.
Keywords: Pointing, macros, window management.

INTRODUCTION
Pointing facilitation techniques aim at improving the acqui-
sition of on-screen targets with a pointing device. Pointing
being arguably one of the most fundamental tasks in HCI [2],
research on these techniques is usually motivated by the idea
that small improvements in speed or accuracy may result in
large efficiency gains. Yet very few of the techniques pro-
posed by HCI researchers are actually used in existing sys-
tems. As explained by Wobbrock et al. [15], one reason
for this is probably that most of these techniques are target-
aware: they require some knowledge about the size and posi-
tion of the targets and sometimes the ability to modify them.

Numerous target-aware pointing techniques have indeed been
proposed that try to beat Fitts’ law by reducing target dis-
tance, increasing target width or both [2]. Drag-and-pop [3],

LRI Technical Repport Number 1520
JUNE 2009

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
UMR 8623, CNRS Université de Paris Sud

Bât. 490, 91405 ORSAY Cedex France

for example, temporarily brings potential targets closer to
the cursor. Ninja cursors [12] are multiple cursors attached
to a single device to reduce the average distance to targets.
Expanding targets dynamically change their size to provide
users with a larger area to interact with at their focus of at-
tention [13]. The bubble cursor [9] dynamically resizes its
activation area so that exactly one target is selected at any
time. Object pointing [10] allows the cursor to skip accross
empty spaces, jumping from one target to another, while se-
mantic pointing [4] dynamically adjusts the control-display
gain according to targets. Other techniques take the dynamic
characteristics of pointing gestures into account to predict the
target [1] or adapt the cursor’s activation area [7].

Target-aware techniques tend to work best on sparse layouts:
in dense layouts, occlusion and false activation problems can
quickly obviate the potential benefits [2]. Deciding which of
the on-screen objects should really be considered as potential
targets is a complex problem. Basic interaction techniques
like rubber-band selection also require pointing and clicking
on blank parts of the interface, which is inherently impos-
sible with some techniques. Lastly, some of them are also
known to be visually distracting either because of the grow-
ing and shrinking of objects, or because of the discontinuities
introduced by cursor warping.

A few target-agnostic techniques have also been proposed
that focus on user actions instead of possible targets. The
angle mouse, for example, adjusts the control-display gain
based on angular deviation [15]. MAGIC uses eye tracking
to coarsely define an area of interest in which the cursor is
automatically warped [16]. Rake cursor uses the gaze posi-
tion to select a cursor from a grid of several [5]. It has also
been suggested to associate a small magnetic force to each
past click or drag to make targets easier to select without re-
quiring prior knowledge of them [11]. All these techniques
have some advantages over the target-aware ones, but have
the disadvantage of considering all pixels equal, at least ini-
tially, which leads to limited performance improvements.

Target-aware techniques aim at providing quick access to all
possible targets at a given time. The work presented here was
initially motivated by the idea of supporting quick access to
only a few targets mainly, if not exclusively, specified by the
user. In this perspective, our work can be seen as a gener-
alization of the approach successfully applied by Tsandilas
& schraefel in the particular case of menus [14]. However,
we are not only interested in facilitating pointing, but also
in the operations that usually follow. We are particularly in-
terested in repeated interaction sequences that imply going
back and forth between two or more locations. Since few
target-aware pointing techniques have been implemented in
real systems, we also wanted our work to be easily applica-
ble to standard graphical environments, without necessarily
requiring the modification of applications.

The rest of this note describes UIMarks1, a system designed
to facilitate the selection and activation of a target chosen
from a limited and specific set. We start by defining the con-
cept behind that system. We then describe the interactions
between the user and the system, the two versions that we
implemented, and conclude with directions for future work.

CONCEPT
UIMarks was not designed to replace traditional pointing, but
rather to supplement it by providing users with an alternative
mode they can deliberately activate based on their specific
needs. UIMarks supports the creation, configuration and use
of user interface marks, graphical objects that explicitly lo-
cate on-screen targets and provide quick ways to interact with
them. Typical use consists of entering the mode, selecting a
mark and leaving the mode, which activates the mark and can
in turn trigger some actions.

The marks can be seen as an equivalent of bookmarklets for
graphical interfaces. One might create a mark over the Get
mail button of a mailer that clicks it and send the pointer back
to where it was. One might put a mark that double-clicks on
a desktop icon. Or one might leave a more complex mark on
a menu or palette that would provide a way of getting back
after some user interaction, facilitating tasks requiring back
and forth pointing and interaction.

Before describing user interactions in more detail, we will
define more precisely the UIMarks concept by describing the
mark attributes, the actions that can be attached to them and
how they can be graphically represented.

Mark attributes
A mark is a uniquely identifiable object associated to an on-
screen (x, y) position and further characterized by three at-
tributes: its creator, target and lifetime

Creator – Marks can be created by the user, in anticipation of
future use. They can be created by UIMarks itself in an im-
plicit way, in response to user actions, or as a consequence
of the explicit activation of another mark. Lastly, marks can
also be created by UIMarks on behalf of other applications.
An application might request the creation of a temporary
mark on the Ok button of a dialog box, for example.

1pronounced ["wi�m�ark], like UIST

Target – Marks can be either attached to the screen, or to a
particular graphical object. In the latter case, activating the
mark will raise the enclosing window and give it the key-
board focus. User actions on that window such as move,
resize, iconify or close will also impact on the mark.

Lifetime – Marks can be permanent or temporary, lasting for
only a limited time or number of activations.

Possible values for mark attributes can be summarized as:

creator ∈ {user, uimarks, otherapp}
target ∈ {screen, window(id)}

lifetime ∈ {permanent, temporary}

Actions
Each mark has an associated action that will be triggered ev-
ery time the mark is activated. This action will be further
referred to as the primary action. Incidental actions can also
take place immediately before and after the primary action.
We will refer to those as preceding and following actions.
When executed, all three actions have access to the mark at-
tributes as well as the location at which the user entered the
UIMarks mode, i.e. the entering point.

Primary action – It can be as simple as go there, click
or double-click. It can consist in a user-defined combina-
tion of such basic interactions. But it can also be arbitrarily
complex, although it should remain describable to the user in
a simple way, either textual (e.g. switch to the virtual desk-
top on the right) or graphical. The window associated to the
mark, if any, will be raised and given the keyboard focus be-
fore this action is executed.

Preceding action [optional] – The only preceding action that
can take place is the creation of a new mark (presumably
temporary) at the entering point. The characteristics of this
mark, however, can be fully specified. Note that this action
must be executed first because of the side effects the primary
one might have on the initial context (e.g. it might change
the window stacking order).

Following action [optional] – Any action taking place at the
entering point, i.e. come back [and do xxx].

The execution steps triggered by the activation of a mark can
be summarized as follows:

1. [create a mark configured like this at the entering point]
2. [raise the window and give it the keyboard focus]
3. execute the primary action
4. [come back [and do xxx]]

Graphical representation
When in UIMarks mode, each visible mark is represented
on-screen by a disk shown at its location. The external and
internal borders of the disk and its fill color are used to visu-
alize the basic attributes of the mark (Figure 2). The primary
action it triggers is represented by drawings inside the disk
while incidental actions are represented on the outside (Fig-
ure 2). The preceding creation of a new mark is denoted by
an arrow that starts on the left side of the disk and points
forward. The new mark can be represented with extensive

details at the end of this arrow. More compact representa-
tions are also possible if it uses standard attribute values and
causes no incidental action. Following actions are denoted
using an annotated arrow that starts on the right side of the
disk and points backward.

Come back Come back
& click

Come back
& double-click

Following actions (examples)

Go there Go there
& click

Go there
& double-click

Primary actions (examples)

Create a mark with default attributes that...

goes
there & clicks

goes there
& double-clicks

goes
there

Create a
window-speci!c
temporary mark

Preceding actions (examples)

uimarksuser other
application

Creator Lifetime

permanent temporary

Target

screen window

Figure 2: Visual representation of attributes and actions

To facilitate its selection and activation in certain situations,
a mark can be offset from the underlying on-screen target.
In this case, a small unselectable spot is left to indicate the
target, connected to the mark by a line segment. Figure 3
shows a sample composition of the elements we described:
an offseted user-created, window-specific, permanent mark
that clicks and sends the cursor back to the entering point.

Figure 3: UIMark example

INTERACTION
In this section, we describe the interactions used to create,
select, configure, activate and delete marks. We focus our
attention on the principles that guided the design of these in-
teractions rather than implementation details, some of which
will be described in the next section.

All UIMarks interactions take place in a specific mode. Out-
side this mode, the marks are not visible. In this mode, a
semi-transparent overlay is displayed on top of all windows,
which preserves the user’s context but helps to visually dif-
ferentiate the marks (Figure 1, B and C). Switching between
views, i.e. entering and leaving the mode, should be quick
and easy. The mode can be associated, for example, to con-
tinuous pressure on a specific key (e.g. Windows or, Fn), but-

ton, or pedal. Leaving the mode activates the selected mark,
if any, by default. Two specific operations allow the user to
leave the mode without activating any mark: one that moves
the system pointer back to where the user entered the mode,
and the other that simply leaves it where it is. These opera-
tions can be triggered by pressing specific keys (e.g. Escape
and Enter) or buttons.

The selection of an existing mark should also be as fast as
possible. To achieve this, the UIMarks mode uses an adapta-
tion of the bubble cursor [9]. The selected mark is scaled up
by a factor (e.g. 5/3) to differentiate it. A small cross locates
the entering point, and the location of the system pointer is
indicated by a small dot (Figure 1, B and C). Additionally, we
increase the system pointer’s acceleration to reduce clutch-
ing for long distances. This change does not seem to cause
any problem, presumably because of the important effective
size of the marks with respect to the bubble cursor (Casiez
et al. found little impact of high gain levels on performance
except for very small targets and constant gain [6]). The de-
fault acceleration is automatically restored when leaving the
UIMarks mode. It can also be temporarily restored within
the mode by pressing a specific key (e.g. Ctrl), to support
precise (re)positioning of the marks. Note that in addition
to pointing-based selection, users can also circulate between
marks using the Tab key.

A button click with the system pointer on an empty space
creates a new mark with default attribute values that can be
affected by the button used or keyboard modifiers. The newly
created mark is automatically selected. Whenever a mark
is selected, specific interaction techniques make it possible
to reconfigure its target, lifetime and associated actions, the
latter being chosen from a predefined set or incrementally
specified. The selected mark can be deleted by pressing the
Backspace key. Marks can be moved by a simple drag-and-
drop interaction and offseted the same way using a keyboard
modifier or alternative button.

We have also experimented with the use of the touchpad of
a laptop combined with an external mouse. The touchpad
was initially envisioned as a specific UIMarks device allow-
ing implicit bimodal interaction, with the mouse being used
for standard pointing. Operating the accelerated bubble cur-
sor with the non dominant hand proved to be quite difficult,
however. The touchpad and mouse are thus now configured
to be used in the UIMarks mode in a bimanual rather than
bimodal way: the accelerated mouse for fast selection, and
the unaccelerated touchpad for precise positioning and con-
figuration.

We acknowledge the fact that configuring a mark can be time
consuming. However, this should not happen too often and
the power of the marks resides in their use: their fast se-
lection and activation, which can trigger operations that go
beyond simple pointing.

IMPLEMENTATION
Implementing UIMarks notably requires the ability to ob-
serve, alter and generate input events, to display a semi-
transparent overlay, and to determine target windows and
track them. We have implemented the proposed techniques

on two different platforms: OS X and the experimental
X Window system Metisse [8].

Because Metisse provides full control over its input and out-
put mechanisms, implementing UIMarks on it was pretty
straightforward. Minor details of this implementation in-
clude the creation of holes in windows that cover marked
windows to show marks in context, the possibility to use var-
ious actions related to virtual desktops, and simple mouse-
based interactions to configure the marks basic attributes and
incrementally specify the associated actions.

The OS X implementation uses the Quartz 2D and Event Ser-
vices APIs. It uses an overlay window that covers the whole
display space independently of the number of physical dis-
plays. It controls pointer acceleration through the HID Sys-
tem Manager and uses CoreFoundation’s distributed notifica-
tion center to receive mark-related commands from external
applications written in any language. Two lines of Python
code are all it takes to send it a command to create, config-
ure or delete a mark, for example. Simple keyboard-based
configuration techniques are available to users in this version
that only allow them to cycle between pre-defined combina-
tions of primary and incidental actions (e.g. “go there, click
& come back”, “create a temporary mark & go there”).

The window management services offered by Apple’s public
APIs are quite limited. A special connection to the window
server is notably required to manage other applications’ win-
dows, which is exclusively maintained by the Dock. We re-
sorted to using the SetFrontProcess function and the Ac-
cessibility API to raise windows, to associate marks to some
of them and to track them. This causes an unwanted flash
when we attach a mark to a particular window, as we need
to temporarily hide the UIMarks window to query the Ac-
cessibility API for the target one. It also causes occasional
unwanted modifications of the window stacking order.

Real use of UIMarks on the two platforms suggests that cer-
tain global aspects of it should be left configurable by the
user. This includes the default target and lifetime for newly
created marks, for example. But it also includes the defini-
tion of the temporary lifetime. Having experimented with
several definitions that combine temporal and activation lim-
its, we see different advantages and drawbacks in all of them.
The automatic creation of a temporary mark at the entering
point as a substitute for preceding actions has been vividly
discussed. The impact of some window management opera-
tions is also difficult to decide. Although it seems reasonable
to destroy the marks associated to a window being closed,
what should be done when it is iconified, for example? Hid-
ing the associated marks might seem the more coherent thing
to do, but keeping them visible provides a quick way of de-
iconifying the window on activation. Similarly, should marks
be moved with the underlying window or offseted? All these
aspects are currently configurable at run-time in our imple-
mentations.

FUTURE WORK
We have presented UIMarks, a system designed to support
quick graphical interaction with a specific and limited set of
targets. We are now interested in determining the conditions

under which such a system provides a real benefit. Informal
use suggests it might mainly provide an advantage for long
distance or small targets. Lab experiments will help to assess
the cost of mode switching and cursor warping depending
on the distance, size and nature of the marks. UIMarks has
already been tested in dual-monitor configurations. We are
currently adapting the software to make it work on a high-
resolution interactive wall.

REFERENCES
1. T. Asano, E. Sharlin, Y. Kitamura, K. Takashima, and

F. Kishino. Predictive interaction using the delphian desktop.
In Proc. UIST ’05, 133–141. ACM, 2005.

2. R. Balakrishnan. "Beating" Fitts’ law: virtual enhancements
for pointing facilitation. IJHCS, 61(6):857–874, 2004.

3. P. Baudisch, E. Cutrell, M. Czerwinski, D. C. Robbins, P. Tan-
dler, B. B. Bederson, and A. Zierlinger. Drag-and-pop and
drag-and-pick: techniques for accessing remote screen con-
tent on touch- and pen-operated systems. In Proc. of Interact
2003, 57–64. IOS Press, 2003.

4. R. Blanch, Y. Guiard, and M. Beaudouin-Lafon. Semantic
pointing: improving target acquisition with control-display ra-
tio adaptation. In Proc. of CHI ’04, 519–526. ACM, 2004.

5. R. Blanch and M. Ortega. Rake cursor: improving point-
ing performance with concurrent input channels. In Proc. of
CHI ’09. ACM, 2009.

6. G. Casiez, D. Vogel, R. Balakrishnan, and A. Cockburn. The
impact of control-display gain on user performance in point-
ing tasks. HCI, 23(3):215–250, 2008.

7. O. Chapuis, J. Labrune, and E. Pietriga. Dynaspot: speed-
dependent area cursor. In Proc. of CHI ’09. ACM, 2009.

8. O. Chapuis and N. Roussel. Metisse is not a 3D desktop! In
Proc. of UIST’05, 13–22. ACM, 2005.

9. T. Grossman and R. Balakrishnan. The bubble cursor: en-
hancing target acquisition by dynamic resizing of the cursor’s
activation area. In Proc. of CHI ’05, 281–290. ACM, 2005.

10. Y. Guiard, R. Blanch, and M. Beaudouin-Lafon. Object point-
ing: a complement to bitmap pointing in GUIs. In Proc. of
GI ’04, 9–16. CHCCS, 2004.

11. A. Hurst, J. Mankoff, A. K. Dey, and S. E. Hudson. Dirty
desktops: using a patina of magnetic mouse dust to make com-
mon interactor targets easier to select. In Proc. UIST ’07, 183–
186. ACM, 2007.

12. M. Kobayashi and T. Igarashi. Ninja cursors: using multiple
cursors to assist target acquisition on large screens. In Proc.
of CHI ’08, 949–958. ACM, 2008.

13. M. J. McGuffin and R. Balakrishnan. Fitts’ law and expanding
targets: experimental studies and designs for user interfaces.
ACM ToCHI, 12(4):388–422, 2005.

14. T. Tsandilas and m. c. schraefel. Bubbling menus: a selective
mechanism for accessing hierarchical drop-down menus. In
Proc. CHI ’07, 1195–1204. ACM, 2007.

15. J. Wobbrock, J. Fogarty, S. Liu, S. Kimuro, and S. Harada.
The angle mouse: target-agnostic dynamic gain adjustment
based on angular deviation. In Proc. of CHI ’09. ACM, 2009.

16. S. Zhai, C. Morimoto, and S. Ihde. Manual and gaze input
cascaded (MAGIC) pointing. In Proc. of CHI ’99, 246–253.
ACM, 1999.

	RR1520entete
	RR1520rapp
	ABSTRACT
	INTRODUCTION
	CONCEPT
	Mark attributes
	Actions
	Graphical representation

	INTERACTION
	IMPLEMENTATION
	FUTURE WORK
	REFERENCES

