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1 Deterministic problem

We consider the classical quadratic knapsack problem consisting of the decision to include
or not each of a list of n item in a bag able to carry a certain maximum weight. An
item i is associated with a pair (ri, wi) describing the added reward (in terms of utility of
the knapsack’s content) and weight for including it. This problem takes the form of the
following optimization problem

maximize
x

xTRx (1a)

subject to wTx ≤ d (1b)

xi ∈ {0, 1} , ∀ i ∈ {1, 2, ..., n} , (1c)

where x is a vector of binary values indicating whether each item is included in the knapsack
or not, w ∈ ℜn is the vector of weights, and R ∈ ℜn×n is a matrix which (i, j) term
describes the linear contribution to reward of holding both items i and j. This allows to
model complementarity or substitution between items.

2 Stochastic problem

It is often the case that at the time of making the knapsack decision either the reward
parameters or the weights parameter (or both) are not exactly known. In that case, one has
the option to represent is knowledge of these parameters through describing a measurable
space of outcomes (Ω,F) and a probability measure F on this space. The knapsack problem
thus becomes a stochastic problem where R̃ and w̃ must now respectively be considered as
a random matrix and a random vector. Specifically, R̃ : Ω→ ℜn×n and w̃ : Ω→ ℜn. In this
context, it is natural to formulate the following stochastic program:

maximize
x

EF [u(x
T R̃x)] (2a)

subject to PF (w̃
Tx ≤ d) ≥ 1− η (2b)

xi ∈ {0, 1} , ∀ i ∈ {1, 2, ..., n} , (2c)

for some utility function u(·) and some 0 < η < 1.
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3 Distributionally robust problem

Under many circumstances, the assumption of full knowledge of the distribution F fails. For
this reason, it can be necessary to consider that the only knowledge we have of a distribution
is that it is part of some uncertainty set D. Following a robust approach, in this context
we will be interested in choosing items for out knapsack so that the value of the knapsack,
as measured by the stochastic program, as best worst-case guarantees under the choice of a
distribution in this uncertainty set. By exploiting the Lagrangian of the stochastic program,
this can be represented mathematically as

maximize
x

inf
F∈D

SP(x, F ) , (3)

where SP(x, F ) refers to the objective function of this problem that is augmented with
feasibility verification: i.e.,

SP(x;F ) =

{

EF [u(x
T R̃x)] if PF (w̃

Tx ≤ d) ≥ 1− η

−∞ otherwise
.

Lemma 1. Problem (3) is equivalent to

maximize
x

inf
F∈D

EF [u(x
T R̃x)] (4a)

subject to inf
F∈D

PF (w̃
Tx ≤ d) ≥ 1− η (4b)

xi ∈ {0, 1} , ∀ i ∈ {1, 2, ..., n} . (4c)

Proof. This is simply due to the fact that in order for infF∈D SP(x, F ) to be finite valued, x
must satisfy constraint 5b.

4 Reduction of robust problem to deterministic form

Definition 1. Without loss of generality, let ξ be a random vector in ℜm from which R̃ and
w̃ depend linearly.

R̃ =
m
∑

i=1

AR̃
i ξi w̃ = Aw̃ξ .

Assumption 1. The utility function u(·) is piecewise linear, increasing and concave. In
other words, it can be represented in the form:

u(y) = min
i∈{1,2,...,K}

aiy + bi ,

where a ∈ ℜK and a ≥ 0.
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Assumption 2. The distributional uncertainty set accounts for information about the sup-
port S, mean µ, and an upper bound Σ on the covariance matrix of the random vector ξ

D(S, µ,Σ) =







F

∣

∣

∣

∣

∣

∣

P(x ∈ S) = 1
EF [ξ] = µ

EF [(ξ − µ)(ξ − µ)T ] � Σ







.

Theorem 1. Under assumptions 1 and 2, and given that 0 < η < 1, then problem (3) is
equivalent to the following deterministic problem

maximize
x,t,q,Q

t− µTq− (Σ + µµT ) •Q (5a)

subject to t ≤
m
∑

j=1

aiξjx
TAR̃

j x+ bi + ξTq + ξTQξ , ∀ ξ ∈ S ∀ i = {1, 2, ..., K} (5b)

Q � 0 (5c)

µTAw̃T
x+

√

1− η

η
‖Σ1/2Aw̃T

x‖2 ≤ d (5d)

xi ∈ {0, 1} , ∀i ∈ {1, 2, ..., n} . (5e)

Proof. The proof relies here on applying the theory presented in [Delage & Ye, 2010] to
convert the distributionally robust objective into its deterministic equivalent. In a second
step, one applies the theory presented in [Calafiore & El Ghaoui, 2006] to convert the dis-
tributionally robust chance constraint in its own deterministic equivalent.

Corollary 1. Given that the support of F is ellipsoidal, S = {ξ|ξT ξ ≤ 1}, this problem
further reduces to the following problem

maximize
x,t,q,Q,v,z,τ

t− µTq− (Σ + µµT ) •Q (6a)

subject to

[

Q q+aiv
2

qT+aivT

2
bi − t

]

� −τk

[

I 0
0 −1

]

, ∀ i = {1, 2, ..., K} (6b)

vj = AR̃
j • (xx

T ) , ∀ j ∈ {1, 2, ..., m} (6c)

Q � 0 (6d)
[

0 Σ1/2z

zTΣ1/2 0

]

�

√

η

1− η
(µTz− d)I (6e)

z = Aw̃T
x (6f)

xi ∈ {0, 1} , ∀i ∈ {1, 2, ..., n} , (6g)

which, if we disregard constraint (6c), is a semi-definite program with binary variables.

Proof. Here, the proof relies on the S-Lemma and on a well known equivalence relation for
second order cone constraints to reformulate constraint (5b) and 5d respectively as linear
matrix inequalities.
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5 Semidefinite Relaxation

We apply semidefinite relaxation of the binary constraints which makes use of the decision
matrix X.

X =

[

xxT x

xT 1

]

Problem (4) can therefore be rewritten as:

maximize
x,t,q,Q,v,z,τ

t− µTq− (Σ + µµT ) •Q (7a)

subject to

[

Q q+aiv
2

qT+aivT

2
bi − t

]

� −τk

[

I 0
0 −1

]

, ∀ i = {1, 2, ..., K} (7b)

vj = ĀR̃
j •X , ∀ j ∈ {1, 2, ..., m} (7c)

Q � 0 (7d)
[

0 Σ1/2z

zTΣ1/2 0

]

�

√

η

1− η
(µTz− d)I (7e)

zi = Āw̃
i •X (7f)

X ∈ X , (7g)

where X represents a set of constraints that serve the purpose of tightening the relaxation,
and where

ĀR̃
j =

[

AR̃
j 0
0 0

]

Āw̃
i =

[

0 0.5[Aw̃]i
0.5[Aw̃]Ti 1

]

,

with the notation [·]i used to refer to an operator that extracts the i-th column of a matrix.

6 Robust problem for multidimensional knapsack prob-

lem

Here we consider stochastic multidimensional knapsack problems. The problem can be for-
mulated as below:

maximize
x

EF [u(x
T R̃x)] (8a)

subject to PF (w̃
T
j x ≤ dj, j = 1, . . . ,M) ≥ 1− η (8b)

xi ∈ {0, 1} , ∀ i ∈ {1, 2, ..., n} , (8c)

for some utility function u(·) and some 0 < η < 1.
And the corresponding robust problem for the multiple knapsack problem is
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maximize
x

inf
F∈D

EF [u(x
T R̃x)] (9a)

subject to inf
F∈D

PF (w̃
T
j x ≤ dj, j = 1, . . . ,M) ≥ 1− η (9b)

xi ∈ {0, 1} , ∀ i ∈ {1, 2, ..., n} . (9c)

Definition 2. Without loss of generality, let ξj, j = 1, . . . ,M be a random vector in ℜm

from which R̃ and w̃ depend linearly.

R̃ =
M
∑

j=1

m
∑

i=1

AR̃
jiξji w̃j = A

w̃j

j ξj, j = 1, . . . ,M .

Assumption 3. The distributional uncertainty set accounts for information about the sup-
port S, mean µj, and an upper bound Σj on the covariance matrix of the random vector
ξj, j = 1, . . . ,M

D(S, µj ,Σj) =







F

∣

∣

∣

∣

∣

∣

P(x ∈ S) = 1
EF [ξj ] = µj

EF [(ξj − µj)(ξj − µj)
T ] � Σj







.

Furthermore, the random vectors ξi and ξj are independent when i 6= j. The support of F is
ellipsoidal, S = {ξ|ξT ξ ≤ 1}.

Theorem 2. Under assumptions 1 and 3, and given that 0 < η < 1, then problem (9) is
equivalent to the following problem

maximize
x,t,qj ,Q

t− µTq− (Σ + µµT ) •Q (10a)

subject to

[

Q q+akv
2

qT+akv
T

2
bk − t

]

� −τi

[

I 0
0 −1

]

, ∀ k = {1, 2, ..., K} (10b)

v(j−1)∗M+i = AR̃
ji • (xx

T ) , ∀ j ∈ {1, 2, ...,M}∀ i ∈ {1, 2, ..., m} (10c)

Q � 0 (10d)

inf
F∈D

PF (w̃
T
j x ≤ dj, j = 1, . . . ,M) ≥ 1− η (10e)

xi ∈ {0, 1} , ∀ i ∈ {1, 2, ..., n} (10f)

where q = [q1; . . . ;qj; . . . ;qM ].
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6.1 SDP approximation

Correspondingly, we have a semidefinite relaxation of the multidimensional knapsack prob-
lems:

maximize
x,t,qj ,Q

t− µTq− (Σ + µµT ) •Q (11a)

subject to

[

Q q+akv
2

qT+akv
T

2
bk − t

]

� −τi

[

I 0
0 −1

]

, ∀ k = {1, 2, ..., K}(11b)

v(j−1)∗M+i = AR̃
ji •X , ∀ j ∈ {1, 2, ...,M}∀ i ∈ {1, 2, ..., m} (11c)

(DRSKP − SDP ) Q � 0 (11d)

inf
F∈D

PF (w̃
T
j x ≤ dj , j = 1, . . . ,M) ≥ 1− η (11e)

Xii = xi, i = 1, . . . , n (11f)
[

1 xT

x X

]

� 0 (11g)

xi ∈ {0, 1} , ∀ i ∈ {1, 2, ..., n} (11h)

Apart from the constraint (11e), DRSKP-SDP is an SDP problem. Thus in this subsection,
we investigate the distributionally robust joint chance constraint. First of all, we review two
existing approximations.

6.1.1 Bonferroni

A popular approximation for joint chance-constrained problems is based on Bonferroni’s
inequality, which decomposes the joint constraint into M individual constraints. When
∑M

j=1 ηk = η, we have

PF (w̃
T
j x ≤ dj) ≥ 1− ηj , j = 1, · · · ,M ⇒ PF (w̃

T
j x ≤ dj, j = 1, . . . ,M) ≥ 1− η

It is easy to prove that the optimal values of the Bonferroni approximations is lower
bounds of DRSKP-SDP.

6.1.2 Approximation by Zymler, Kuhn and Rustem

In their approximation, they introduce a scaling parameter α ∈ A = {α ∈ RM : α > 0}. For
any α ∈ A

inf
F∈D

PF (w̃
T
j x ≤ dj, j = 1, . . . ,M) ≥ 1− η ⇐⇒ inf

F∈D
PF (max

j
{αj(w̃

T
j x− dj)} ≤ 0) ≥ 1− η

Then they consider the distributionnally robust CVaR conservative approximation :

Z(α) = {x ∈ R
n : sup

F∈D
CVaRη(max

j
{αj(w̃

T
j x− dj)} ≤ 0}
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Theorem 3. For any fixed x ∈ R
n and α ∈ A, we have

Z(α) =















x ∈ R
n : ∃(β,M) ∈ R× S

mM+1 :

∣

∣

∣

∣

∣

∣

∣

∣

β + 1
η
Ω •M ≤ 0

M−

(

0 1
2
αjyj(x)

1
2
αjy

T
j (x) −αjdj − β

)

< 0, ∀j = 1, . . . ,M

M < 0















Moreover, {x ∈ R
n : infF∈D PF (w̃

T
j x ≤ dj , j = 1, . . . ,M) ≥ 1− η} =

⋃

α∈AF(α).

where yj(x) ∈ R
mM and yj(x) = (zeros((j − 1)m),Aj

w̃j
T
x, zeros((M − j)m)), where

zeros(k) represents k zero elements.

6.2 Approximation of DRSKP-SDP

Theorem 4. Under assumptions 1 and 3, and given that 0 < η < 1, then problem DRSKP-
SDP is equivalent to the following deterministic problem

maximize
x,t,q,Q,v,z,τ

t− µTq− (Σ + µµT ) •Q (12a)

subject to

[

Q q+akv
2

qT+akv
T

2
bk − t

]

� −τi

[

I 0
0 −1

]

, ∀ k = {1, 2, ..., K}(12b)

v(j−1)∗M+i = AR̃
ji •X , ∀ j ∈ {1, 2, ...,M}∀ i ∈ {1, 2, ..., m} (12c)

(DRSKP − SDP ) Q � 0 (12d)

µTA
w̃j

j x+

√

pyj

1− pyj
‖Σ

1/2
j Aj

w̃j
T
x‖2 ≤ dj (12e)

M
∑

j=1

yj = 1, yj ≥ 0 (12f)

Xii = xi, i = 1, . . . , n (12g)
[

1 xT

x X

]

� 0 (12h)

(12i)

where p = 1−η, µ = [µ1; . . . ;µj; . . . ;µM ], Σ =











Σ1

Σ2

. . .

ΣM











and ξ = [ξ1; . . . ; ξj; . . . ; ξM ].

6.2.1 Sequential approximations

As we take variables yj, j = 1, ...M as parameters, the problem DRSKP-SDP is an SDP
problem. Thus we use a sequential approximation method where we improve the parameters
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y during the procedure. The main idea of the approach is to relax the parameter yj, i.e.,
increase value of yj, when j-th chance constraint is active with feasible solution x0.

Algorithm 1: Sequential Approximation Procedure
• Initialization: Let y0 ∈ RM

+ be scaling parameters, i.e.,
∑M

j=1 y
0(j) = 1, y0 ≥ 0. Set

the iteration counter to t← 1.
• Update: Solving DRSKP-SDP with y = yt and let xt and f t denote an optimal

solution and the optimal value, respectively. Let Y (j) =
(dj−µTA

w̃j
j xt)2

(‖Σ1/2
j Aj

w̃j
T
xt‖2)2

and ỹ(j) =

logp
Y (j)

Y (j)+1
. Residual parameter: r = yt − ỹ. Weight parameter: w(j) = 1 − r(j), j =

1, ...,M . Set yt ← w
∑

r∑
w

+ ỹ

• Stopping criterion: if f t−f t−1

f t−1 ≤ ǫ (where ǫ is a given small tolerance), return yt and
stop. Otherwise, set t← t + 1 and go back to step Update.

Remark : For the initial parameter y0, all its elements are set to be 1
M
.

Lemma 2. The sequence yt are scaling parameters, i.e.,
∑M

j=1 y
t(j) = 1, yt ≥ 0.

Proof. Following the procedure, we have the updated yt+1 = w
∑

r∑
w

+ ỹ. As x∗ is a feasible

solution of Problem (12) as y = yt, then Y (j) =
(dj−µTA

w̃j
j xt)2

(‖Σ1/2
j Aj

w̃j
T
xt‖2)2

≥
√

pyt(j)

1−py
t(j)

, so ỹ(j) =

logp
Y (j)

Y (j)+1
≤ yt(j). Thus r = yt − ỹ ≥ 0. Moreover

∑M
j=1 y

t(j) = 1, yt ≥ 0, r ≤ 1 and

w(j) = 1 − r(j) ≥ 0. As p ≤ 1 and Y (j)
Y (j)+1

≤ 1, so ỹ(j). Thus yt+1 = w
∑

r∑
w

+ ỹ ≥ 0.

Furthermore,
∑M

j=1 y
t+1(j) =

∑ w
∑

r∑
w

+
∑

ỹ =
∑

r +
∑

ỹ =
∑M

j=1 y
t(j) = 1. Thus the

conclusion follows.

Theorem 5. Assume that the problem DRSKP-SDP has a feasible solution with initial
parameter y0. Then, the sequence of objective values {f t} generated by Algorithm 1 is non-
decreasing. Moreover, the sequence {f t} converges to a finite limit and f t is a lower bound
of DRSKP-SDP.

Proof. By Lemma (2), the updated yt+1 in Step Update of the algorithm still are scaling
parameters. So the optimal solution xt+1 in Step Update of the algorithm is a feasible
solution of problem (12). Thus the corresponding optimal value f t+1 is a lower bound of
DRKSP-SDP. Secondly, we prove that xt is a feasible solution of (12) when y = yt+1. In

Step Update of the algorithm, as Y (j) =
(dj−µTA

w̃j
j xt)2

(‖Σ1/2
j Aj

w̃j
T
xt‖2)2

and ỹ(j) = logp
Y (j)

Y (j)+1
, it is easy

to verify that y = ỹ and x = xt satisfy the constraint (12e). In the proof of Lemma (2), we

have w, r ≥ 0 and yt+1 = w
∑

r∑
w

+ ỹ, so yt+1 ≥ ỹ. Moreover
√

py

1−py
is a decreasing function

on the interval (0, 1]. Thus y = yt+1 and x = xt satisfy the constraint (12e). In other words,
xt is a feasible solution of (12) when y = yt+1. This guarantees that the sequences of {f t} is
monotonically nondecreasing. Furthermore, since the solution sequence {xt} is bounded and
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the objective function of (12) is continuous, the monotonicity of the objective value sequence
implies that {f t} has a finite limit.

6.2.2 Piecewise tangent approximation

Theorem 6. Function
√

px

1−px
is convex and decreasing in the region (0, 1], when p ∈ (0, 1).

Proof. Since (
√

px

1−px
)′ = ln p

√
px

2(1−px)
3
2
≤ 0,when x ∈ (0, 1], p ∈ (0, 1),

√

px

1−px
is decreasing.

(
√

px

1−px
)′′ = (ln p)2

4

√
px(1+2px)

(1−px)
5
2
≥ 0,when x ∈ (0, 1], p ∈ (0, 1). So the conclusion claims.

Here, we draw the function
√

px

1−px
on the interval (0, 1], when p = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95

as below.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

P=0.95

P=0.9

Piecewise linear approximation

Piecewise
tangent
approximation

Then we use piecewise tangent approximation method. The idea to approximate the problem

DBSKP is the following: we approximate
√

1−ηyj

ηyj
with a piecewise tangent approximation

of yj. Afterwards, we get the approximation of DBSKP , which is an SDP problem.

9



maximize
x,t,q,Q,v,z,τ,ỹ,z̃

t− µTq− (Σ + µµT ) •Q (13a)

subject to

[

Q q+akv
2

qT+akv
T

2
bk − t

]

� −τk

[

I 0
0 −1

]

, ∀ k = {1, 2, ..., K}(13b)

v(j−1)∗M+i = AR̃
ji •X , ∀ j ∈ {1, 2, ..., m}∀ i ∈ {1, 2, ..., n} (13c)

Q � 0 (13d)
[

0 Σ1/2z̃j
z̃j

TΣ1/2 0

]

� (µTzj − djtj)I (13e)

zj = Aj
w̃j

T
x (13f)

(DRSKP − SDP1) z̃j ≥ âlỹj + b̂lzj, ∀ l ∈ {1, 2, ..., L}∀ j ∈ {1, 2, ..., m} (13g)
M
∑

j=1

ỹj(i) = zj(i), ∀ i ∈ {1, 2, ..., n} (13h)

M
∑

j=1

yj = 1, yj ≥ 0, ∀ j ∈ {1, 2, ...,M} (13i)

Xii = xi, i = 1, . . . , n (13j)
[

1 xT

x X

]

� 0 (13k)

(13l)

Where
√

px

1− px
≈ max

l∈{1,2,...,L}
âlx+ b̂l ,

Theorem 7. The optimal value of (13) is an upper bound of DRSKP-SDP.

Proof. By Theorem (6),
√

px

1−px
is convex and decreasing in the region (0, 1]. Then by

applying the theory presented in [6], the conclusion follows.

6.3 Numerical results part I

We test our formulation SDP relaxations on stochastic knapsack problems (SKP for short)
and stochastic multidimentional knapsack problems (SMKP for short) resepctively. For the
SKP, instances sizes are represented by two parameters: number of items n and number of
random variables m, while there are three parameters for the SMKP: number of items n,
number of random variables m and number of joint chance constraints M . We consider four
problem sizes, i.e., (n,m) = (10, 5); (10, 10); (50, 25); (50, 50). Furthermore, for SKMP, we
choose the M to be 5 and 10 respectively.
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For the sake of simplicity, we set the utility function u(y) = y and the matrix R

is determinisitc and is generated by MATLAB function ”gallery(’randcorr’,n)*10”. The
probabilistic capacity constraints are generated with vector means µj drawn from the uni-
form distribution on [5, 10], and the covariance matrix Σj generated by MATLAB function
”gallery(’randcorr’,n)*2”. The capacity dj is independently chosen from [300, 400] interval
when n = 10, while dj is chosen from [700, 1000] when n = 50. The elements of Aj

w̃j are
uniformly generated on the interval [0, 1]. The Confidence parameter is set to α = 0.1.

To mesure the quality of the results of the SDP relaxations designed hereafter by V SDP ,
we apply randomized rounding method to get a feasible solution whose objective value is a
lower bounder designed hereafter by UB. For the SDP approximations of SMKP, we choose
three tangent points z1 = 0.01, z2 = 0.1 and z3 = 0.4.

All the considered models are generated using MATLAB environment and solved either
by Sedumi [20] with default parameters on an Intel(R)D @ 2.00 GHz with 4.0 GB RAM.

6.4 Numerical results part II

We focus on the semidefinite relaxation of the multidimensional knapsack problems:

maximize
x,t,q,Q,v,z,τ

t− µTq− (Σ + µµT ) •Q (14a)

subject to

[

Q q+akv
2

qT+akv
T

2
bk − t

]

� −τi

[

I 0
0 −1

]

, ∀ k = {1, 2, ..., K}(14b)

v(j−1)∗M+i = AR̃
ji •X , ∀ j ∈ {1, 2, ...,M}∀ i ∈ {1, 2, ..., m} (14c)

(DRSKP − SDP ) Q � 0 (14d)

µTA
w̃j

j x+

√

pyj

1− pyj
‖Σ

1/2
j Aj

w̃j
T
x‖2 ≤ dj (14e)

M
∑

j=1

yj = 1, yj ≥ 0 (14f)

Xii = xi, i = 1, . . . , n (14g)
[

1 xT

x X

]

� 0 (14h)

(14i)

We compare the sequential approximation approach with two existing approximations: the
Bonferroni approximation and Approximation by Zymler, Kuhn and Rustem. The optimal
value of our approximation is denoted by V I , while the optimal value of the Bonferroni
approximation is denoted by V B and the one of the approximation by Zymler et al is denoted
by V Z . All the optimal values are lower bounds of the DRSKP-SDP. Moreover, we compare
them with the piecewise tangent approximation, whose optimal value denoted by V U

We make the tests on two different size: number of items n = {10, 20}, the number of ran-
dom variables m = {5, 6} and number of joint chance constraints M = {4, 5}. For the sake
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of simplicity, we set the utility function u(y) = y and the matrix R is deterministic and is
generated by MATLAB function ”gallery(’randcorr’,n)*10”. The probabilistic capacity con-
straints are generated with vector means µj drawn from the uniform distribution on [5, 10],
and the covariance matrix Σj generated by MATLAB function ”gallery(’randcorr’,n)*2”.
The capacity dj is independently chosen from [200, 300] interval. The elements of Aj

w̃j are
uniformly generated on the interval [0, 1].

To measure the quality of the results of the SDP relaxations designed, we apply random-
ized rounding method to get a feasible solution whose objective value is a lower bounder of
the original problem designed hereafter by V R.

All the considered models are generated using MATLAB environment and solved either
by Sedumi [20] with default parameters on an Intel(R)D @ 2.00 GHz with 4.0 GB RAM.

η V I V Z V B V U V U−V I

V I
V U−V Z

V Z
V U−V B

V B CPU I CPUZ CPUB CPUU V R

1% 46.67 46.65 36.04 46.76 0.19% 0.24% 29.74% 5.60 393.40 0.28 1.31 41.23

2% 54.78 54.74 43.44 54.94 0.29% 0.37% 26.47% 5.80 390.72 0.24 1.13 50.92

3% 59.26 59.20 47.80 59.43 0.29% 0.39% 24.33% 5.45 496.26 0.26 1.09 52.34

4% 62.25 62.18 50.83 62.47 0.35% 0.47% 22.90% 5.62 509.21 0.25 1.10 52.34

5% 64.46 64.38 53.16 64.70 0.37% 0.50% 21.71% 5.83 862.02 0.26 1.14 54.76

6% 66.19 66.10 55.02 66.39 0.30% 0.44% 20.67% 5.86 497.16 0.23 1.05 56.49

7% 67.59 67.50 56.56 67.77 0.27% 0.40% 19.82% 5.74 627.58 0.26 1.17 56.80

8% 68.76 68.66 57.88 68.93 0.25% 0.39% 19.09% 5.75 518.17 0.29 1.15 60.95

9% 69.76 69.66 59.02 69.93 0.24% 0.39% 18.49% 5.82 506.97 0.29 1.21 61.59

10% 70.63 70.53 60.02 70.81 0.25% 0.40% 17.98% 6.21 623.61 0.25 1.53 61.59

Table 1: Computational results of DRSSPP when n = 10,m = 5,M = 4
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η V I V Z V B V U V U−V I

V I
V U−V Z

V Z
V U−V B

V B CPU I CPUZ CPUB CPUU V R

1% 60.96 60.94 46.57 61.19 0.38% 0.41% 31.39% 14.70 9311.99 0.61 5.40 50.19

2% 71.61 71.54 55.96 71.83 0.31% 0.41% 28.36% 17.32 8918.62 0.59 4.82 58.36

3% 77.39 77.29 61.50 77.65 0.34% 0.47% 26.26% 17.78 6831.69 0.58 5.18 69.26

4% 81.20 81.08 65.37 81.45 0.31% 0.46% 24.60% 18.52 12461.91 0.63 5.54 72.89

5% 83.95 83.83 68.31 84.23 0.33% 0.48% 23.31% 16.39 9536.62 0.71 5.41 76.61

6% 86.07 85.94 70.66 86.38 0.36% 0.51% 22.25% 17.12 9206.91 0.75 5.41 76.61

7% 87.78 87.64 72.61 88.11 0.38% 0.54% 21.35% 17.18 19749.16 0.72 5.52 76.61

8% 89.18 89.04 74.27 89.51 0.37% 0.53% 20.52% 17.30 9370.42 0.67 5.37 76.61

9% 90.37 90.22 75.70 90.70 0.37% 0.53% 19.82% 16.55 15440.99 0.65 5.22 76.61

10% 91.39 91.24 76.95 91.73 0.37% 0.54% 19.21% 16.98 15970.64 0.68 5.02 77.36

Table 2: Computational results of DRSSPP when n = 20,m = 6,M = 5

6.5 Numerical results part IV

In this section, we compare the solution from our proposed distributionally robust approach
to the solution of a stochastic programming approach. We test the expected utility perfor-
mance and chance constraint performance under two different distributions that have the
same mean and covariance structure as the assumed. For the stochastic programming ap-
proach, we test on two distributions: a normal distribution versus a uniform distribution
over an ellipsoid support.

The distributionally robust problem is as follows:

maximize
x

vTx (15a)

subject to inf
F∈D

PF (w̃
Tx ≤ d) ≥ 1− η (15b)

0 ≤ xi ≤ 1 , ∀ i ∈ {1, 2, ..., n} , (15c)

With assumpitons
Under assumptions 1 and 3, and given that 0 < η < 1, then problem (15) is equivalent
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to the following problem

maximize
x

vTx (16a)

subject to µTAw̃T
x +

√

1− η

η
‖Σ1/2Aw̃T

x‖2 ≤ d (16b)

0 ≤ xi ≤ 1 , ∀ i ∈ {1, 2, ..., n} , (16c)

The stochastic problem is as follows:

maximize
x

vTx (17a)

subject to PF (w̃
Tx ≤ d) ≥ 1− η (17b)

0 ≤ xi ≤ 1 , ∀ i ∈ {1, 2, ..., n} , (17c)

When ξ is normal distributed, then problem (17) is equivalent to the following problem

maximize
x

vTx (18a)

subject to µTAw̃T
x+ F−1(1− η)‖Σ1/2Aw̃T

x‖2 ≤ d (18b)

0 ≤ xi ≤ 1 , ∀ i ∈ {1, 2, ..., n} , (18c)

where F−1(·) is the inverse of the standard normal cumulative distribution function.
When ξ is uniformly distributed over an ellipsoid support S = {ξ|ξT ξ ≤ 1}, then prob-

lem (17) is equivalent to the following problem

maximize
x

vTx (19a)

subject to µTAw̃T
x +

√

(n + 3)(Ψ−1(1− 2η))‖Σ1/2Aw̃T
x‖2 ≤ d (19b)

0 ≤ xi ≤ 1 , ∀ i ∈ {1, 2, ..., n} , (19c)

where Ψ−1(·) is the inverse of the cumulative distribution of a beta(1/2;n/2+1) probability
density function.

For the sake of simplicity, we set Aw̃ to be the identity matrix. The value vector v is gen-
erated uniformly from interval [0, 100]. The probabilistic capacity constraints are generated
with vector means µ drawn from the uniform distribution on [5, 10], and the covariance ma-
trix Σ generated by MATLAB function ”gallery(’randcorr’,n)*2”. The capacity d is chosen
from [50, 100] interval when n = 10, while d is chosen from [100, 200] when n = 20.
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