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Abstract

In this paper, we investigate the problem of linear joint probabilistic constraints. We
assume that the rows of the constraint matrix are dependent, the dependence is driven by
a convenient Archimedean copula. Further we assume the distribution of the constraint
rows to be elliptically distributed, covering normal, t, or Laplace distributions. Under these
and some additional conditions, we prove the convexity of the investigated set of feasible
solutions. We also develop an approximation scheme for this class of stochastic programming
problems based on second-order cone programming.
Keywords: chance constrained programming; Archimedean copulas; elliptical distribu-
tions; convexity; second-order cone programming.

1 Introduction

We investigate the problem

min cTx subject to P{Tx ≤ h} ≥ p, x ∈ X, (1)

where X ⊂ R
n is a deterministic closed convex set, c ∈ R

n, h = (h1, . . . , hK)T ∈ R
K deterministic

vectors, T = (tT1 , . . . , t
T
K)T ∈ R

K × R
n a random matrix, and p ∈ [0; 1] is a prescribed probability

level. Denote
X(p) :=

{

x ∈ X | P{Tx ≤ h} ≥ p
}

. (2)

For theoretical as well as numerical purposes, it is necessary to investigate the convexity of
the set X(p). To do it, we will first state a convexity result for the set

M(p) :=
{

x ∈ X | P {gk(x) ≥ ξk, k = 1, . . . , K} ≥ p
}

, (3)

where ξ := (ξ1, . . . , ξK) is an absolutely continuous random vector and gk(x) are continuous func-
tions. M(p) is usually called as the set of feasible solutions for a continuous chance-constrained
problem with random right-hand side.

∗Laboratoire de Recherche en Informatique, Université Paris Sud – XI, Bât. 650, 91405 Orsay Cedex, France,
e-mail: {houda,lisser}@lri.fr
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1.1 Survey of literature

The problem involving probability constraints was first formulated by Charnes et al. [1958] and
developed by author’s subsequent papers. Since the earliest papers, it was recognized that these
problems of probabilistically (or chance) constrained programming are hard to treat, both from
theoretical and computational point of view. Van de Panne and Popp [1963] proposed a solution
method for a problem of type (1) with a one-row normally distributed constraint, transformed to
a nonlinear constraint similar to (13). At the same time, Kataoka [1963] investigated the problem
with normally distributed individiual probabilistic constraints with random right hand side; in the
discussion he noticed that the (still individual) constraints with random matrices are also covered
by his approach.

The convexity is widely considered as a considerable difficulty investigating chance constrained
problems. Apart from simple problems presented above, the chance constrained problems often
lead to a feasible solution set which is not convex. Various techniques and conditions were
developed to encompass this issue. As an introducing citation: the model with joint probabilistic
constraints with independent random right hand side was treated by Miller and Wagner [1965].
The convexity of their problem is assured if the probability distribution possesses a property of
decreasing reversed hazard function (increasing hazard function for their maximization form of
the problem). Jagannathan [1974] extended the result to the dependent case, and considered also
the case of random constraint matrix with normally distributed independent rows.

The essential step was made by Prékopa [1971] introducing the notion of logarithmically con-
cave probability measure. He had proven a general theorem which allowed him to introduce many
convenient probability distributions (multivariate normal, Wishart, beta, Dirichlet) and derive
the convexity of the feasible set for the problem with dependent random right hand side following
these probability laws. The concept was further generalized by Borell [1975] and Brascamp and
Lieb [1976] to r-concave (or α-concave) measures and functions (namely densities and distribution
functions). The generalized definition of r-concave function on a set, suitable also for discrete
distributions, was proposed by Dentcheva et al. [2000]. We refer to Prékopa [1995], Prékopa
[2003] (Chapter 5 in Ruszczyński and Shapiro [2003]), and Chapter 4 of Shapiro et al. [2009] for
an exhaustive study and bibliographical references concerning convexity theory in probabilistic
programming.

Despite this considerable progress, the problem of convexity remains to be a big challenge
of stochastic programming, especially for the problem (1) with random matrices. The are more
or less successful extensions to the grounds; for example, Prékopa et al. [2011] have recently
extended the classical result Prékopa [1974], asserting that the problem is convex if the rows
are independently normally distributed and the covariances matrices of the rows are constant
multiples of each other. More promising direction was started by Henrion [2007] giving a complete
structural description (not only the convexity) of a one-row linear chance constraint. Henrion and
Strugarek [2008], introducing a notion of r-decreasing density, succeeded to relate this new notion
with r-concavity of constraint function gk of (3) and proving that convexity of the set M(p) for the
case of independent random variables. The result is applied also for the problem of convexity of
X(p) with normally distributed independent rows, advancing so significantly the classical results.
The result for right-hand side has then been extended towards dependency by Houda [2008]
(see also Houda [2009]) using a variation to the strong mixing coefficient, and by Henrion and
Strugarek [2011] using the theory of copulas. In our paper, we pursue this last direction, and
prove the convexity of the set X(p) for (even non-normal) distributions falling into the class of
elliptical distributions, and using a broader class of copulas to represent the dependency of the
rows in the problem (1).

Using elliptical distributions (as underlying class of probability measures), and using copulas
to represent the structural dependency, is very rare in chance-constrained programming. For the
first term, Henrion [2007] restricts his consideration to a very special case of one-row constraint
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only. Calafiore and El Ghaoui [2006] used a similar notion of Q-radial distribution to develop a
second-order cone constraint, but again for only one-row chance constraint. Concerning the latter
term, up to our knowledge and beyond the reference mentioned above, the copula theory is used
only in the context of generating scenarios for multistage stochastic optimization programs. In our
paper, we exploit together both notions to reformulate the problem (1) as the problem of convex
optimization, and to propose an approximation scheme for this problem using the second-order
cone programming method.

In our paper we start with some insights into the theory of copulas and elliptical distributions.
A convexity result for right-hand sided problem (3) is given in Section 3, whereas the main
convexity result and approximation schemes for (1) are formulated in Section 4.

2 Preliminaries

2.1 Dependence

To measure dependence between constraint rows, we will use the theory of copulas. In this section
we mention only some basic facts about copulas. We refer to the book Nelsen [2006] for a complete
introduction to the theory.

Definition 2.1. A copula is the distribution function C : [0; 1]K → [0; 1] of some K-dimensional
random vector whose marginals are uniformly distributed on [0;1].

Proposition 2.2 (Sklar’s theorem). For any K-dimensional distribution function F : RK → [0; 1]
with marginals F1, . . . , FK, there exists a copula C such that

∀z ∈ R
K F (z) = C(F1(z1), . . . , FK(zK)). (4)

If, moreover, Fk are continuous, then C is uniquely given by

C(u) = F (F−1
1 (u1), . . . , F

−1
K (uK)). (5)

Otherwise, C is uniquely determined on rangeF1 × · · · × rangeFK.

Definition 2.3. A copula C is called Archimedean if there exists a continuous strictly decreasing
function ψ : [0; 1] → R

+, called generator of C, such that ψ(1) = 0 and

C(u) = ψ−1

(

n
∑

i=1

ψ(ui)

)

. (6)

If limu→0 ψ(u) = +∞ then C is called a strict Archimedean copula and ψ is called a strict
generator.

The inverse ψ−1 of a generator function is continuous and strictly decreasing on [0;ψ(0)]
(the value of ψ(0) considered as +∞ if the copula is strict). Sometimes, ψ−1 is defined as the
generalized inverse on the whole positive half-line [0; +∞) by setting ψ−1(s) = 0 for s ≥ ψ(0),
losing that the strictness of the decrease property, but such a definition is not needed through
the context of our paper.

Proposition 2.4. Let ψ : [0; 1] → R
+ be convex, strictly decreasing function with ψ(1) = 0,

limu→0 ψ(u) = +∞, and

(−1)k dk

dtk
ψ−1(t) ≥ 0 ∀k = 0, 1, . . . , K and ∀t ∈ R

+.

Then ψ is a strict copula generator.

3



Proposition 2.5. Any copula generator is convex.

Focus our attention to the set M(p) defined by (3). Assume (for each k = 1, . . . , K) that
elements ξk of ξ have continuous distribution functions Fk, and the whole vector ξ has joint
distribution induced by the copula C, representing the dependence of the rows of the problem.
With these assumptions, we can rewrite the set M(p) as

M(p) =
{

x ∈ X | C
(

F1(g1(x), . . . , FK(gK(x))
)

≥ p
}

. (7)

Proposition 2.6. If the copula C is Archimedean with the (strict or non-strict) generator ψ then

M(p) =

{

x ∈ X | ∃yk ≥ 0 : ψ[Fk(gk(x))] ≤ ψ(p)yk for k = 1, . . . , K,
K
∑

k=1

yk = 1

}

. (8)

Proof. It is easily seen that

M(p) =

{

x ∈ X | ψ−1

(

K
∑

k=1

ψ[Fk(gk(x))]

)

≥ p

}

=

{

x ∈ X |
K
∑

k=1

ψ[Fk(gk(x))] ≤ ψ(p)

}

(9)

as the generator of an Archimedean copula is strictly decreasing function, and noting that ψ(p) ≤
ψ(0) if the generator is not strict (the inverse ψ−1 is strictly decreasing on [0;ψ(0)]). Introducing
auxiliary nonnegative variables y = (y1, . . . , yK) with

∑

k yk = 1, the inequality in (9) is equivalent
to

K
∑

k=1

ψ[Fk(gk(x))] ≤ ψ(p)
K
∑

k=1

yk for some yk ≥ 0 with
K
∑

k=1

yk = 1. (10)

Denote

MI(p) =

{

x ∈ X | ∃yk ≥ 0 : ψ[Fk(gk(x))] ≤ ψ(p)yk for k = 1, . . . , K,
K
∑

k=1

yk = 1

}

;

we will show that M(p) = MI(p). Without lost of generality we assume p < 1 (the case p = 1 is
obvious).

The inclusion MI(p) ⊆ M(p) is seen immediately (it is sufficient to sum up the inequalities).
For the opposite direction, consider x ∈ M(p). It is easy to show that the inequality

C(u) ≤ min
k=1,...,K

uk

(known as Fréchet-Hoeffding upper bound) holds for any copula C and any u = (u1, . . . , uK) ∈
[0; 1]K (see e. g. Nelsen [2006]). It follows that, for x ∈ M(p) and an Archimedean copula C,

Fk(gk(x)) ≥ min
j=1,...,K

Fj(gj(x)) ≥ ψ−1

(

K
∑

k=1

ψ[Fk(gk(x))]

)

≥ p ∀k = 1, . . . , K

thus,
ψ
[

Fk(gk(x))
]

≤ ψ(p) ∀k = 1, . . . , K.

Now, define

yk :=
ψ
[

Fk(gk(x))
]

ψ(p)
for k = 1, . . . , K − 1, yK := 1 −

K−1
∑

k=1

yk.

The definition of yk implies directly that ψ
[

Fk(gk(x))
]

≥ ψ(p)yk for k = 1, . . . , K−1; furthermore,

ψ
[

FK(gK(x))) ≥ ψ(p) −
K−1
∑

k=1

ψ
[

Fk(gk(x))
]

= ψ(p)

(

1 −
K−1
∑

k=1

yk

)

= ψ(p)yK .

Hence, x ∈ MI(p).
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Law Characteristic generator ϕ(t) Radial density gs(t) Normalizing constant cs

normal exp {−t/2} exp
{

−1
2 t2
}

(2π)−s/2

t * (1 + 1
ν t2)−(s+ν)/2 (νπ)−s/2 Γ((s+ν)/2)

Γ(ν/2)

Cauchy exp
{

−
√

t
}

(1 + t2)−(s+1)/2 π−(s+1)Γ(1
2(s + 1))

Laplace (1 + t/2)−1 exp
{

−
√

2|t|
}

π−s/2 Γ(s/2)
2Γ(s)

logistic 2π
√

t

eπ
√

t−e−π
√

t

e−t2

(1+e−t2 )2
*

Table 1: Table of selected multivariate elliptically symmetric distributions.

2.2 Elliptically symmetric random vectors

The concept of elliptically (or radially) symmetric random vectors was introduced in the field of
theory of probability in early seventies of 20th century to extend the class of multivariate normal
distributions. A thorough survey of basic results and properties of elliptical distributions can be
found in the book Fang et al. [1990].

Definition 2.7. An s-dimensional random vector ξ is said to have an elliptically symmetric
distribution, if its characteristic function is given by

φ(z) := EeizT ξ = eizT µϕ(zT Σz)

where ϕ is some scalar function (called characteristic generator), µ some vector (location param-
eter), and Σ a matrix with rank r (scale matrix). We’ll write ξ ∼ Ellips(µ,Σ;ϕ).

Multivariate normal distribution Ns(µ,Σ ≻ 0) is elliptically symmetric with parameters
(

µ,Σ, ϕ(t) = e− 1

2
t
)

. Not all elliptically symmetric distributions have density, but if they have
some, it must be of the form

fξ(z) =
cs√

det Σ
gs

(

√

(z − µ)T Σ−1(z − µ)
)

(11)

where gs : R+
0 → R

+ (called radial density), cs > 0 is a normalization factor ensuring that fξ

integrates to one, and Σ is required to have a full rank, i. e., to be positive definite (we denote
Σ ≻ 0). The radial density of the normal distribution is gs(t) := exp{−1

2
t2} and cs := (2π)−s/2.

Among many properties of elliptical distributions we note that the class of elliptical distributions
is closed under affine transformations: if ξ ∼ Ellips(µ,Σ, ϕ) then for any (r × s)-matrix L and
any r-vector b, the distribution of Lξ + b is Ellip(Lµ+ b, LΣLT , ϕ).

Remark 2.8. The definition of gs is unique only up to a multiplicative constant. In this view,
different equivalent formulations for elliptical density appear in the literature, mostly using the
notion of density generators t 7→ csgs(

√
t) instead of radial densities. Here, we have adopted the

definition and the language of Paindaveine [2012].

Remark 2.9. In Table 2.2 we provide a selection of prominent multivariate elliptical distribution,
together with their characteristic generators and radial densities. Setting the location and scale
parameters to values different than µ = 0 and Σ = Is, we can easily get the non-standardized
versions of these well-known distributions. Note that the Cauchy distribution is a special case of
t distribution with ν = 1. The star ∗ denotes an expression which is too involved to be mentioned
in the table. Concerning the multivariate t distribution we refer to the book Kotz and Nadarajah
[2004]; for the logistic distribution, see Volodin [1999].

The following result is a special case of Lemma 2.2 in Henrion [2007].
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Lemma 2.10. Assume ξ ∼ Ellip(µ,Σ;ϕ) where Σ ≻ 0, and denote

Y (p) :=
{

x ∈ X | P{ξTx ≤ h} ≥ p
}

. (12)

Then
Y (p) =

{

x ∈ X | µTx+ Ψ−1(p)
√
xT Σx ≤ h

}

(13)

where Ψ is one-dimensional distribution function induced by the characteristic function φ(t) =
ϕ(t2). In particular, Ψ does not depend on x.

Using a variation of this lemma and Proposition 2.6, we can formulate the following result.

Proposition 2.11. Suppose, in (1), that tTk ∼ Ellip(µk,Σk, ϕk) (with appropriate dimensions)
where Σk ≻ 0. Then the feasible set of the problem (1) can be equivalently written as

X(p) =

{

x ∈ X | ∃yk ≥ 0 : µk
Tx+ Ψ−1

k

(

ψ−1(ykψ(p))
)

√

xT Σkx ≤ hk, k = 1, . . . , K,
∑

k

yk = 1

}

(14)

where Ψk are one-dimensional distribution functions induced by the characteristic functions of the
form φk(t) = ϕk(t2), and ψ is a generator of an Archimedean copula describing the dependence
properties of the rows of the matrix T .

Proof. If x = 0, the equivalence is obvious. Suppose so that x 6= 0 (say x 6∈ X) and denote

ξk(x) :=
tTk x− µT

k x√
xT Σkx

, gk(x) :=
hk − µT

k x√
xT Σkx

,

then

X(p) =
{

x ∈ X | P
[

Tx ≤ h
]

≥ p
}

=
{

x ∈ X | P
[

tTk x ≤ hk, k = 1, . . . , K
]

≥ p
}

=
{

x ∈ X | P
[

ξk(x) ≤ gk(x), k = 1, . . . , K
]

≥ p
}

.

(15)

According to the calculus rule for elliptical distributions, namely φcT ξ+d(t) = eitd · φξ(ct), the
characteristic function of ξk(x) is

φξk(x)(t) = exp

{

−it µTx√
xT Σx

}

· φtT
k

(

x√
xT Σx

t

)

.

The characteristic function of tTk is φtT
k
(z) = eizT µϕk(zT Σz), so φξk(x)(t) = ϕk(t2). It follows

that the distribution function of ξk(x) is Ψk, independent of x. Returning to (15), and applying
Proposition 2.6, we have

X(p) =

{

x ∈ X | ∃yk ≥ 0 : ψ[Ψk(gk(x))] ≤ ykψ(p), k = 1, . . . , K,
K
∑

k=1

yk = 1

}

=

{

x ∈ X | ∃yk ≥ 0 : gk(x) ≤ Ψk(ψ−1(ψ(p)yk), k = 1, . . . , K,
K
∑

k=1

yk = 1

}

=

{

x ∈ X | ∃yk ≥ 0 : µk
Tx+ Ψ−1

k

(

ψ−1(ykψ(p))
)

√

xT Σkx ≤ hk, k = 1, . . . , K,
∑

k

yk = 1

}

.

The model with normally distributed rows now comes as a special case of the Proposition 2.11.
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3 Convexity

To deal with convexity we need to describe first two special notions: that of r-concave function
and of r-decreasing density.

Definition 3.1 (Prékopa [1995], Chapter 4 of Shapiro et al. [2009]). A function f : Rs → (0; +∞)
is called r-concave for some r ∈ [−∞; +∞] if

f(λx+ (1 − λ)y) ≥ [λf r(x) + (1 − λ)f r(y)]1/r (16)

is fulfilled for all x, y ∈ R
s and all λ ∈ [0; 1]. The cases r = −∞, 0,+∞ are to be interpreted by

continuity.

The case r = 1 is concavity in the usual sense. The case r = 0 correspond to the so-called
log-concavity, i. e., to the case in which the function ln f is concave. The case r = −∞ is known as
quasi-concavity and corresponding right-hand side of (16) takes the form of min{f(x), f(y)}. If
f is r-concave for some r, then it is r′-concave for all r′ ≤ r; in particular, all r-concave functions
are quasi-concave.

Definition 3.2 (Henrion and Strugarek [2008]). A function f : R → R is called r-decreasing for
some r ∈ R with the threshold t∗ > 0 if it is continuous on (0; +∞) and the function t 7→ trf(t)
is strictly decreasing for all t > t∗.

The threshold t∗ depends on the value of r, hence, in this view, it can be considered as a
function of r. For simplicity, we have dropped this implicit dependence from the notation. If the
function f(t) is non-negative and r-decreasing for some r, then it is r′-decreasing for all r′ ≤ r.
In particular, if r > 0 then f(t) is 0-decreasing, hence strictly decreasing for t > t∗. The table of
prominent one-dimensional r-decreasing densities together with their thresholds has been given
in Henrion and Strugarek [2008]. By the following proposition, we add some elliptical to this list.

Proposition 3.3. The following one-dimensional elliptical distributions have r-decreasing den-
sities for some r:

1. normal distribution, for r > 0 with the threshold t∗ = 1
2

(

µ+
√
µ2 + 4rσ2

)

;

2. Student’s t distribution with ν degrees of freedom, for 0 < r < ν + 1 with the threshold
t∗ =

√

rν
ν+1−r

3. Laplace (double exponential) distribution, for all r > 0 with the threshold t∗ = rσ√
2
.

Proof. To test r-decreasing property for a differentiable elliptical density we have only to check
if the derivative is strictly negative for t > t∗. Due to the special form (11) of elliptical density,
this is equivalent to check

(

µ

σ
+ t̂

)

g′
s(t̂) + rgs(t̂) < 0, (17)

for all t̂ > t̂∗ ≥ µ, using the substitution t̂ := t−µ
σ

for t ≥ µ. By the backward substitution, the
resulting threshold will have the form

t∗ := µ+ σt̂∗. (18)

1. The proof for normal distribution was shown in Henrion [2007] as Proposition 4.1.
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2. The derivative of the radial density for (non-standardized) t distribution reads as

g′
s(t) = − s+ ν

ν + t2
tgs(t),

hence the condition (17) translates to

−t̂2(s+ ν − r) − t̂
µ

σ
(s+ ν) + rν < 0.

The optimal threshold is calculated through (18) as

t∗ = µ

(

1 +
s+ ν

2σ(s+ ν − r)

)

+

√

1
4

(

s+ ν

s+ ν − r
µ

)2

+
rν

s+ ν − r
σ2

for r < s + ν. For standardized univariate distribution use µ = 0, σ = 1, s = 1 to get the
result.

3. The condition (17) for Laplace distribution reduces to

−
(

µ

σ
+ t̂∗

)√
2 + r < 0

which translates to the optimal t̂∗ = r√
2

− µ
σ
; the value of t∗ is then easily computed by (18).

Concerning convexity of the set X(p) with multivariate normal distributions, it is possible to
exploit directly the result of Henrion and Strugarek [2011] using Gumbel copula and the proof
of convexity for normally distributed random matrix from Henrion and Strugarek [2008]. But
we will first prove the following modification of Theorem 1 from Henrion and Strugarek [2011],
which generalizes the result for convexity of M(p) in the case of Archimedean copulas (instead of
author’s logexp-concave copulas). It is worth to note, still, that Gaussian copulas cannot be used
here as they are neither Archimedean nor generally logexp-concave.

Theorem 3.4. Consider the set M(p) and the following assumptions for k = 1, . . . , K:

1. there exist rk > 0 such that gk are (−rk)-concave,

2. the marginal distribution functions Fk have (rk + 1)-decreasing densities with the thresholds
t∗k, and

3. the copula C is Archimedean with a strict generator ψ, and u 7→ ψ(eu) is convex function
on (−∞; 0].

Then M(p) is convex for all p > p∗ := maxk Fk(t∗k).

Proof. Let p > p∗, λ ∈ [0; 1], and x, y ∈ M(p). We have to show that λx+ (1 − λ)y ∈ M(p), that
is

C
(

F1[g1(λx+ (1 − λ)y)], . . . , FK [gK(λx+ (1 − λ)y)]
)

= ψ−1

{

K
∑

k=1

ψ
(

Fk[gk(λx+ (1 − λ)y)]
)

}

≥ p

or, equivalently,
K
∑

k=1

ψ
(

Fk[gk(λx+ (1 − λ)y)]
)

≤ ψ(p)
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(c. f. the proof of Proposition 2.6). Denote, for k = 1, . . . , K,

qx
k := Fk[gk(x)], q

y
k := Fk[gk(y)].

In the first part of the proof of Theorem 1 in Henrion and Strugarek [2011] it has been shown,
based on assumptions 1 and 2, that

Fk[gk(λx+ (1 − λ)y)] ≥ [qx
k ]λ[qy

k ]1−λ,

hence

ψ
{

Fk[gk(λx+ (1 − λ)y)]
}

≤ ψ
{

[qx
k ]λ[qy

k ]1−λ
}

= ψ
{

exp
[

λ ln qx
k + (1 − λ) ln qy

k

]}

.

Assumption 3 allows us to continue

ψ
{

Fk[gk(λx+ (1 − λ)y)]
}

≤ λψ(eln qx
k ) + (1 − λ)ψ(eln qy

k ) = λψ(qx
k) + (1 − λ)ψ(qy

k).

Introducing auxiliary variables yk with
∑

yk = 1, and applying Proposition 2.6, we conclude on

K
∑

k=1

ψ
(

Fk[gk(λx+ (1 − λ)y)]
)

≤
K
∑

k=1

(

λψ(qx
k) + (1 − λ)ψ(qy

k)
)

≤
K
∑

k=1

(

λψ(p)yk + (1 − λ)ψ(p)yk

)

= ψ(p).

Proposition 3.5. The following copulas satisfy assumption 3 of Theorem 3.4:

1. independent (product) copula with ψ(t) = − ln t;

2. Gumbel-Hougaard copulas with ψθ(t) = (− ln t)θ and θ ≥ 1;

3. Frank copulas with ψθ(t) = − ln
(

e−θt−1
e−θ−1

)

and θ > 0;

4. Clayton copulas with ψθ(t) = 1
θ
(t−θ − 1) and θ > 0.

Proof. Denote ψ̃θ(t) := ψθ(et) for t ∈ (−∞; 0] and copula parameter θ (if needed).

1. The independent copula is special case of the Gumbel-Hougaard copula (see below), using
θ = 1.

2. For the Gumbel-Hougaard copula and x, y ∈ (−∞; 0],

λψ̃θ(x) + (1 − λ)ψ̃θ(y) = λ(−x)θ + (1 − λ)(−y)θ ≥
(

−λx− (1 − λ)y
)θ

= ψ̃θ

(

λx+ (1 − λ)y
)

as the power function is convex on [0; +∞) for θ ≥ 1.

3. For the Frank copulas: both the negative natural logarithm function − ln(·) and the expo-
nential function exp(·) are convex functions, hence (together with their monotonicity), for
x, y ∈ (−∞; 0],

λψ̃θ(x) + (1 − λ)ψ̃θ(y) = −λ ln
exp{−θex} − 1

e−θ − 1
− (1 − λ) ln

exp{−θey} − 1
e−θ − 1

≥ − ln

{

λ exp{−θex} + (1 − λ) exp{−θey} − 1
e−θ − 1

}

≥ − ln

{

exp{−θλex − θ(1 − λ)ey} − 1
e−θ − 1

}

≥ − ln

{

exp{−θeλx+(1−λ)y} − 1
e−θ − 1

}

= ψ̃
(

λx+ (1 − λ)y
)
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4. For the Clayton copula and t ∈ (−∞; 0], simply compute

ψ̃′′(t) = θe−θt

which is positive everywhere if θ > 0.

4 Main result

4.1 Convex reformulation

We now focus on reformulation of the feasible set X(p) of the problem (1). In the following
theorem we introduce sufficient conditions under which the set X(p) is convex.

Theorem 4.1. Consider problem (1) where

1. rows tTk of the matrix T have elliptically symmetric distributions with parameters (µk,Σk, ϕk)
where Σk are positive definite matrices; denote by Ψk the (scaled row) distribution functions
generated by characteristic functions of the form ϕk(t2);

2. the joint distribution function of Ψk is driven by an Archimedean copula with a generator ψ.

Then the problem (1) can be equivalently written as

min cTx subject to

µk
Tx+ Ψ−1

k

(

ψ−1(ykψ(p))
)

√

xT Σkx ≤ hk,
∑

k

yk = 1

x ∈ X, yk ≥ 0 with k = 1, . . . , K.

(19)

Moreover, if

3. the function u 7→ ψ(eu) is convex;

4. the densities associated with Ψk are (at least) 3-decreasing, with thresholds t∗k > 0;

5. p > p∗ := maxk

{

Ψk

(

max{t∗k, 4λ(k)
max[λ(k)

min]−3/2‖µk‖}
)}

, where λ(k)
max, λ

(k)
min are largest and

lowest eigenvalues of the matrices Σk,

then the problem is convex.

Proof. The first part of the theorem has been already proven as Proposition 2.11. For the con-
vexity result, we partially reproduce the proof of Theorem 5.1 of Henrion and Strugarek [2008]
but with modifications concerning our use of copulas and elliptical distribution. We consider
separately the cases 0 ∈ X(p) and 0 6∈ X(p). Note that p > 0 by assumption 5 (as a particular
case), hence the property 0 ∈ X(p) is equivalent to hk ≥ 0 for all k = 1, . . . , K.

Consider first the case 0 6∈ X(p). Denote again

ξk(x) :=
tTk x− µT

k x√
xT Σkx

, gk(x) :=
hk − µT

k x√
xT Σkx

.

The (one-dimensional) random variables ξk(x) have elliptical distributions with the distribution
functions Ψk, not depending on x. Furthermore, our feasible set can be rewritten as

X(p) = {x ∈ R
n | P{ξk(x) ≤ gk(x), k = 1, . . . , K} ≥ p} .

10



Denote

u∗
k := 4λ(k)

max[λ(k)
min]−3/2,

Ω(k) :=
{

x ∈ R
n | hk − µT

k x > u∗
k

√

xT Σkx

}

.

Together with assumption 5, it can be shown that

X(p) ⊆ Ω(k). (20)

To prove the inclusion, let x ∈ X(p) be arbitrary. Then

Ψk(gk(x)) ≥ min
k=1,...,K

Ψk(gk(x)) ≥ C (Ψ1(g1(x)), . . . ,ΨK(gK(x))) ≥ p > Ψk(u∗
k).

Due to assumption 4, Ψk is strictly increasing at least if p > Ψk(t∗k) which is assured by assump-
tion 5. Hence, gk(x) > u∗

k and thus x ∈ Ω(k).
In Henrion and Strugarek [2008] (through Lemma 5.1 and the proof of Theorem 5.1), it

was shown that the functions gk(x) are (−2)-concave on the set Ω(k). We will not repeat the
whole (a little subtle) proof here – it does rely neither on properties of copulas nor on particular
characteristics of distributions, hence, it applies here without any modification. At the same
time, the proof deals also with the issue that gk must not be defined and be (−2)-concave on the
whole space (as supposed by Theorem 3.4). With identical arguments, using (−2)-concavity on
Ω(k) instead, together with assumptions 2, 4, and relation (20), is enough to apply the statement
of Theorem 3.4 to this modified setting to conclude on the convexity of X(p).

Consider now the case 0 ∈ X(p), i. e., all hk ≥ 0. Suppose x, y ∈ X(p) arbitrary, we have to
check xλ := λx + (1 − λ)y ∈ X(p) for all λ ∈ [0; 1]. Again, this part of the proof does not differ
from the proof of Theorem 5.1 in Henrion and Strugarek [2008]:

1. If x = y = 0 leads to xλ = 0 ∈ X(p) by assumption.

2. If x = 0, y 6= 0, xλ ∈ X(p) by Proposition 5.1 of Henrion and Strugarek [2008] with the
remark that this proposition remains valid for arbitrary distribution (not only for the normal
one).

3. If x 6= 0, y = 0, xλ ∈ X(p) by the same argument.

4. If x 6= 0, y 6= 0, either xλ = 0 ∈ X(p), or xλ 6= 0 and we can proceed as in the first part
of the proof to state the (−2)-concavity of the function gk leading to xλ ∈ X(p) and the
desired convexity result.

4.2 SOCP approximation

The formulation (19) of the problem (1) is still not a second-order cone program due to decision
variables appearing as arguments to the (nonlinear) quantile functions Ψ−1

k . To resolve the issue,
we formulate lower and upper approximations to the problem (19) using favorable properties of
Archimedean generators. We first formulate an auxiliary convexity lemma which gives us the
possibility to find these approximations.

Lemma 4.2. If

1. Ψ is a distribution function induced by the characteristic function φ(t) = ϕ(t2) where ϕ is
characteristic generator of an elliptical distribution,

11



2. the associated density is 0-decreasing with some threshold t∗ > 0,

3. p > p∗ = Ψ(t∗), and

4. ψ is a generator of an Archimedean copula,

then the function
y 7→ Ψ−1

(

ψ−1(yψ(p))
)

(21)

is convex on [0; 1].

Proof. Proposition 2.5 claims that ψ is strictly decreasing convex function on [0; 1], hence ψ−1

is strictly decreasing convex function on [0;ψ(0)] with values in [p; 1]. The second assumption
implies the concavity of Ψ(·) on (t∗,+∞), hence the convexity of Ψ−1(·) on (p∗; 1]. Together with
the third assumption, and the fact that Ψ−1 is distribution function, hence non-decreasing, the
assertion of lemma is proved.

The proposed approximation technique follows the outline appearing in Cheng and Lisser
[2012] and Cheng et al. [2012]. For each variable yk, consider a partition of the interval (0; 1] in
the form 0 < yk1 < . . . < ykJ ≤ 1.1

4.2.1 Lower bound: piecewise tangent approximation

Theorem 4.3. The optimal value of the problem

min cTx subject to

µk
Tx+

√

zkT Σkzk ≤ hk,

zk ≥ akjx+ bkjw
k,

∑

k

wk = x,

x ∈ X, wk ≥ 0, zk ≥ 0 with k = 1, . . . , K, j = 1, . . . , J,

(22)

where

akj := Hk(ykj) − bkjykj,

bkj :=
ψ(p)

fk(H(ykj))ψ′ (ψ−1(ykjψ(p)))
,

Hk(y) := Ψ−1
k

(

ψ−1(yψ(p))
)

,

and fk is the density function associated with the distribution function Ψk, is a lower bound for
the optimal value of the problem (1).

Proof. Fix a row k. The first order Taylor approximations of Hk(y) at each point ykj of the
partition are given by

THk(ykj)(y) = H(ykj) +H ′(ykj)(y − ykj).

Using the simple fact that

[

ψ−1(ykjψ(p))
]′

= Ψk

(

Ψ−1
k

[

ψ−1(ykjψ(p))
])′

= Ψ′
k(Hk(ykj)) · (Ψ−1

k )′
(

ψ−1(ykjψ(p))
)

·
[

ψ−1(ykjψ(p))
]′

1The number J of partition points can differ for each row k but, to simplify the notation and without loss of
generality, we consider this number to be the same for each row k through the paper.
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we obtain explicitly the derivative H ′
k(ykj) in terms of Ψ′

k = fk and we can continue by

THk(ykj)(y) = Hk(ykj) +
ψ(p)

fk(Hk(ykj))
· (ψ−1)′(ykjψ(p)) · (y − ykj).

The derivative (ψ−1)′ is obtained similar way; finally we have

THk(ykj)(y) = Hk(ykj) +
ψ(p)

fk(Hk(ykj)) · ψ′ (ψ−1(ykjψ(p)))
· (y − ykj) =: akj + bkjy,

where akj and bkj are given by Theorem 4.3. According to Lemma 4.2, the function Hk(y) is
convex on (0; 1] hence the piecewise-linear function maxj {akj + bkjy} is a lower bound for Hk(y).

Introducing auxiliary decision vectors zk fulfilling (22), and wk := ykx, the final problem
formulation is a SOCP problem and the proof is then completed.

Remark 4.4. The linear functions akj + bkjy are tangent to the (quantile) function Hk at the
partition points; hence the origin of the name tangent approximation. This approximation leads
to an outer bound for feasible solution set X(p).

4.2.2 Upper bound: piecewise linear approximation

Theorem 4.5. The optimal value of the problem

min cTx subject to

µk
Tx+

√

zkT Σkzk ≤ hk,

zk ≥ akjx+ bkjw
k,

∑

k

wk = x,

x ∈ X, wk ≥ 0, zk ≥ 0 with k = 1, . . . , K, j = 1, . . . , J − 1,

(23)

where

akj := Hk(ykj) − bkjykj,

bkj :=
Hk(yk,j+1) −Hk(ykj)

yk,j+1 − ykj

,

Hk(y) := Ψ−1
k

(

ψ−1(yψ(p))
)

,

is an upper bound for the optimal value of the problem (1).

Proof. Fix a row k. The linear approximation of Hk(y) for y ∈ [ykj; yk,j+1] (for j = 1, . . . , J − 1)
is given by

LHk,j(y) = akj + bkjy

where akj and bkj are given by Theorem 4.5. According to Lemma 4.2, the functionHk(y) is convex
on (0; 1] hence the piecewise-linear function maxj {akj + bkjy} is an upper bound for Hk(y).

Introducing auxiliary decision vectors zk fulfilling (22), and wk := ykx, the final problem
formulation, i. e., inner approximation (23), is a SOCP problem and the proof is then completed.
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5 Conclusions

In this paper we stated equivalent deterministic formulation of the linear chance-constrained prob-
lems with random matrix of dependent and elliptically distributed rows. The row dependence was
modeled through Archimedean copulae with generators having special convexity property. Addi-
tional assumption of ellipticity for probability distribution extends usual normality assumption
of row vectors. Under these assumptions, and under the assumption of r-decreasing probability
density function for the row-normalized random variables, we proved the convexity of the feasible
set for sufficiently high probabilities. Inner and outer SOCP approximation of the feasible set are
then given, providing upper and lower bound for the optimal value of the problem.
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