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Abstract In this paper, we present a new scheme of a sampling method to solve
chance constrained programs. First of all, a modified sampleaverage approximation,
namely Partial Sample Average Approximation (PSAA) is presented. The main ad-
vantage of our approach is that the PSAA problem has only continuous variables
whilst the standard sample average approximation (SAA) contains binary variables.
Although our approach generates new chance constraints, weshow that such con-
straints are easily tractable. Moreover, it is shown that PSAA has the same conver-
gence properties as SAA. Finally, numerical experiments are conducted to compare
the proposed approximation to SAA in order to show the strength of our new sample
method.
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1 Introductions

In this paper, we focus on the following chance constrained problems:

min f (x) (1a)

(CCP) s.t. p0(x) := P{g j(x, ξ) ≥ 0, j = 1, ...,m} ≥ 1− η (1b)

x ∈ X, (1c)

where f : Rn → R is a convex objective function,X ⊂ Rn is convex and represents a
set of additional deterministic constraints,ξ ∈ Rd is random vector with a distribution
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F and its supportΞ ∈ Rd, g j : Rn × Ξ → R are given constraint mapping functions,
η ∈ (0, 1] is a confidence parameter, andp0(x) is the feasible probability ofx ∈ X.
Constraint (1b) is called chance (or probabilistic) constraint. Furthermore, we only
use a single probability constraint on all the rows in the constraintsg j(x, ξ) ≥ 0
rather than requiring each row to be satisfied with high probability individually. Such
a constraint is known as ajoint chance constraint, whereas it is called aindividual
chance constraintwhenm= 1.

Since chance constrained programmingwas firstly introduced by Charnes, Cooper
and Symonds in [Charnes et al., 1958], it has attracted significant attention of many
researchers and practitioners as it is widely applied in a broad range of areas, such as
finance, transportation and energy. . . [Andrieu et al., 2010,Cheng and Lisser, 2012,
Cheng and Lisser, 2013,Cheng and Lisser, 2014,Dentcheva and Ruszczyński, 2006].
However, a little progress has been made for solving such problems at least for two
reasons. First, the feasible set of CPP is generally nonconvex even if the set X is
convex and the functiong j(x, ξ) is concave inx. Second,P{g j(x, ξ) ≥ 0, j = 1, ...,m}
with a fixed x ∈ X is generally hard to compute, as it requires multi-dimensional
integrations. For instance, Nemirovski and Shapiro [Nemirovski and Shapiro, 2006]
stated that evaluating the distribution of a weighted sum ofuniformly distributed in-
dependent random variables is NP-hard. For a comprehensiveoverview on theory
and applications of chance constrained problems, we refer the reader to the books of
Prékopa [Prékopa, 1995] and Shapiro et al. [Shapiro et al., 2009].

As chance constrained problems are computationally difficult, most of litera-
ture approaches use approximation schemes. Generally, most of solving methods on
chance constrained problems are twofold: on one hand, convex or tractable approxi-
mations (see, e.g., [Nemirovski and Shapiro, 2006,Cheung et al., 2012] ). In [Nemirovski and Shapiro, 2006],
Nemirovski and Shapiro built a large deviation-type approximation, referred to as
Bernstein approximation, while Cheung et al. [Cheung et al., 2012] established a
new large deviation bounds for the stochastic linear matrixinequalities. The other
approach consists in discretizing the probability distribution and solving the ob-
tained equivalent deterministic problem. Precisely, there are two discretization ap-
proaches: one assumes that distributions of random variables are discrete (see, e.g.,
[Dentcheva et al., 2000,Luedtke et al., 2010]). Dentcheva et al.[Dentcheva et al., 2000]
introduced the concept of ap-efficient point of a probability distribution and then de-
rived various equivalent problem formulations, while Luedtke et al. [Luedtke et al., 2010]
gave two strengthened formulations for linear programs with joint probabilistic con-
straints where only the right-hand side is random. The otherone uses sample approxi-
mation methods to approximate original problems (see, e.g., [Luedtke and Ahmed, 2008,
Pagnoncelli et al., 2009]), which replaces the probabilitydistribution by its empir-
ical distribution obtained from Monte Carlo samples ofξ. Among the sample ap-
proximations in the literature, there are three popular methods:scenario approach
[Calafiore and Campi, 2005,Calafiore and Campi, 2006],SAA approach[Luedtke and Ahmed, 2008,
Pagnoncelli et al., 2009], andconstraint removal approach[Campi and Garatti, 2011,
Pagnoncelli et al., 2012]. The scenario approach was firstlyintroduced by Califiore
and Campi [Calafiore and Campi, 2005,Calafiore and Campi, 2006,Campi et al., 2009],
where all the sampled constraint sets are satisfied, i.e.,g j(x, ξ) ≥ 0, j = 1, ...,m is sat-
isfied for all the Monte Carlo samples ofξ. The main advantage of this approach is
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that a feasible solution is provided when the number of samplesN is large enough.
Moreover, ifg j(x, ξ), j = 1, ...,m is concave inx, then the subsequent problem is a
convex problem. However, whenη is not small enough, e.g., 0.1, then the obtained
solution is feasible to the problem but usually costly. In other words, for not small
enoughη, the scenario approach is too conservative. To overcome this drawback,
an alternative sample approximation is the SAA approach where only a subset of
sampled constraint sets is satisfied. WhenN is large enough, the SAA approach pro-
vides a near-optimal solution. Further, the obtained solution converges to the opti-
mal solution of the original problem w.r.t. some conditions[Pagnoncelli et al., 2009].
Besides, there are different variants of SAA approach to solve chance constrained
problems. Hong et al. [Hong et al., 2011] proposed to reformulate the chance con-
straint by a difference of convex (DC) functions, and then approximated the DC
function by a sequence of convex problems and the limit of thesequence solutions
is a Karush-Kuhn-Tuck (KKT) point of the original problem. Further as the func-
tions in the DC formulations are hard to evaluated, they applied SAA approach to
solve the convex problems. Another different SAA approach is proposed by Bar-
rera et al. [Barrera et al., 2014] where the confidence parameter η is quite small,
e.g., 10−6. They pointed out that the existing sampling-based algorithms require an
impractical number of samples to yield reasonable solutions and thus proposed a
variance-reduced SAA approach by using importance sampling techniques. However,
the SAA problem is still hard to solve as it is a mixed integer optimization problem
with N binary variables. To avoid this drawback, the constraint removal approach
[Campi and Garatti, 2011,Pagnoncelli et al., 2012] was proposed in order to provide
better solutions than the scenario approach and with less CPU time than SAA ap-
proach. The constraint removal approach consists in discarding a subset of sampled
constraints using a heuristic algorithm, e.g., greedy algorithm, to solve the original
problem.

In this paper, we present a modified sample average approximation, namely Par-
tial Sample Average Approximation (PSAA), to solve the chance constrained prob-
lems, which makes full use of some independence informationbetween the random
variables. In contrast to the traditional SAA approach, PSAA problem has only con-
tinuous variables whilst the standard sample average approximation (SAA) contains
binary variables. Despite that new chance constraints are generated in PSAA, it is
shown that such constraints are easily tractable in many cases. The remainder of this
paper is organized as follows. In section 2 we present a detailed study of the scenario
approach and the traditional SAA approach. In section 3 the PSAA approach is in-
troduced as well as the underlaying idea. Convexity and convergence properties for
the PSAA approach are given in section 4. In section 5, we present our numerical ex-
periments on the different sample approximation approaches. Conclusions and future
research discussions are given in the last section.

2 Scenario approach and SAA method

Under the assumption that we can sample from the distribution F, thescenario ap-
proximation(SA) [Calafiore and Campi, 2005,Calafiore and Campi, 2006] ofchance
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constrained problem (1a) is as follows:

min f (x) (2a)

s.t. g j(x, ξ̂t) ≥ 0, j = 1, . . . ,m, t = 1, . . . ,N (2b)

x ∈ X, (2c)

where the scenarioŝξ1, . . . , ξ̂N are assumed to be independent and sampled from the
distributionF. For the quality of the approximation, One relevant result is given by
Campi et al. [Campi et al., 2009] as follows:

Theorem 1 Assume that for all the scenario samples
−→̂
ξ = {ξ̂1, . . . , ξ̂N}, the scenario

approximation (2) is either unfeasible, or, if feasible, itattains an unique optimal

solution x∗(
−→̂
ξ ). Givenβ ∈ (0, 1], if the sample size N satisfies the relation

N ≥ N∗ := ⌈2
η

(log
1
β
+ n)⌉,

(⌈·⌉ denotes the smallest integer which is greater than or equal to the argument) then,

P−→̂
ξ
{x∗(
−→̂
ξ ) is either undefined or feasible for problem(1a)} ≥ 1− β.

When X ∈ Rn is a convex set andg j is concave inx for eachξ, the scenario
approximation is a convex problem. One advantage of this approach is that there
is no restriction on the distribution ofξ but only the assumption that samples can
be obtained. However, Luedtke and Ahmed [Luedtke and Ahmed,2008] pointed out
that the approach is too conservative, as it requires that all sampled constraint sets
be satisfied. An alternative approach isSample Average Approximation(SAA) where
the probability distribution is replaced by its empirical distribution obtained from
Monte Carlo samples ofξ. The key difference between the two approximations is
that SAA approach chooses part of sampled constraint sets, rather than all the sets, to
be satisfied. Accordingly, the SAA of Problem (1a) is

min f (x) (3a)

s.t.
1
N

N
∑

t=1

I(g j(x, ξ̂t) ≥ 0, j = 1, . . . ,m) ≥ 1− η (3b)

x ∈ X, (3c)

WhereI(·) is the indicator function which takes value one when· is true and zero
otherwise. Whenη = 0, it becomes the scenario approach. By applying the “big-M”
method, we have the equivalent formulation of the SAA problem as follows:

min f (x) (4a)

s.t. g j(x, ξ
t) + Myt ≥ 0, j = 1, ....m, t = 1, ...,N (4b)

∑N
t=1 yt

N
≤ η (4c)

yt ∈ {0, 1}, t = 1, ...,N, x ∈ X, (4d)
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whereM is large enough such thatg j(x, ξt) + M ≥ 0, j = 1, ...,m, t = 1, ...,N. It is
observed that the new formulation is a mixed integer problembecause of the binary
variablesyt. Thus, the SAA problem is hard to solve when the number of samplesN
becomes large.

3 Modified Sampling methods

Before we give the scheme of our approach, we present the key assumption of the
modified sample method.

Assumption 1. We assume thatξ = (ξ1, ξ2), further ξ1 and ξ2 are independently
distributed.

Without loss of generality, the dimensions of vectorsξ1 andξ2 are assumed to be
d1 andd2 respectively. It is easy to see that the dimension of the vectorξ is d = d1+d2.

Lemma 1 Let X and Y be independent integrable random variables and g(x, y) be a
real-valued function. If the expectation of g(X,Y) exists, then

E[g(X,Y)] = EXEY[g(X,Y)] = EYEX[g(X,Y)] (5)

Proof. Let fX,Y(x, y) be the joint probability density function ofX and Y whereas
fX(x) and fY(y) are the marginal density functions ofX andY respectively. AsX andY
are independent, thenfX,Y(x, y) = fX(x) fY(y). Further withE[g(X,Y)] =

!
g(x, y) fX,Y(x, y)dxdy,

we have

E[g(X,Y)] =
"

g(x, y) fX(x) fY(y)dxdy=
∫

(
∫

g(x, y) fy(y)dy

)

fX(x)dx

=

∫
(
∫

g(x, y) fx(x)dx

)

fY(y)dy= EXEY[g(X,Y)] = EYEX[g(X,Y)

�

We reconsider the chance constraint (1b) with Assumption 1.First, the probability
is represented as an expectation:

p0(x) = P{G(x, ξ1, ξ2) ≥ 0} = E[I(G(x, ξ1, ξ2) ≥ 0)]

whereG(x, ξ1, ξ2) := min1≤ j≤m g j(x, ξ1, ξ2). According to the results of Lemma 1, the
chance constraint (1b) is equivalent to the following constraint:

p0(x) = Eξ1(Eξ2[I(G(x, ξ1, ξ2) ≥ 0)]) ≥ 1− η

Applying the same idea of SAA method, we replace the distribution of ξ1 with its
empirical distribution based on Monte Carlo samples. More precisely,

Eξ1(Eξ2[I(G(x, ξ1, ξ2) ≥ 0)]) ≈
∑N

t=1Eξ2[I(G(x, ξ̂t1, ξ2) ≥ 0)]

N

=

∑N
t=1 P{G(x, ξ̂t1, ξ2) ≥ 0}

N

whereξ̂11, ..., ξ̂
N
1 are independent Monte Carlo samples of the random variableξ1.
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Definition 1 (Partial sample average approximation) Let ξ̂11, ..., ξ̂
N
1 be independent

Monte Carlo samples of the random variableξ1. Then, we have a sampled program
of CPP as follows:

min f (x) (9a)

s.t. pN(x) :=

∑N
t=1 P{G(x, ξ̂t1, ξ2) ≥ 0}

N
≥ 1− η (9b)

x ∈ X, (9c)

which is equivalent to

V(PS AA) := min f (x) (10a)

s.t. P{g j(x, ξ̂t1, ξ2) ≥ 0, j = 1, ...,m} ≥ yt, t = 1, ...,N (10b)

(PS AA)

∑N
t=1 yt

N
≥ 1− η (10c)

yt ≥ 0; t = 1, ...,N, x ∈ X, (10d)

Compared to SAA approach[Luedtke and Ahmed, 2008,Pagnoncelli et al., 2009],
the main advantage of our approach is that PSAA problem has only continuous vari-
ables whilst SAA problem contains binary variables though new chance constraints
are generated in PSAA problem. We show that such constraintsare easily tractable
in some cases. However, both PSAA and SAA share the same idea that the original
distribution of the random vector is replaced by its empirical distribution obtained
from N independent samples.

PSAA problem becomes easier to solve if variableyt is fixed. In order to seek
a tradeoff between solution quality and computation hardness, we propose a new
approach based on the PSAA method, whereyt, t = 1, ...,N have the same value, i.e.,
yt = 1− η, t = 1, ...,N.

Definition 2 (Partial scenario approach) Let ξ̂11, ..., ξ̂
N
1 be an independent Monte

Carlo samples of the random variableξ1. Then we have a sampled program of CPP
as follows:

V(PS A) := min f (x) (11a)

s.t. P{g j(x, ξ̂t1, ξ2) ≥ 0, j = 1, ...,m} ≥ 1− η, t = 1, ...,N (11b)

(PS A) x ∈ X, (11c)

which is called ”Partial Scenario approach” (PSA).

With PSA method, chance constraint (1b) is divided intoN chance constraints.
It is easy to check that PSA problem is a conservative approximation of the PSAA
problem, i.e.,V(PS A) ≥ V(PS AA).

4 Discussion on the two approaches

In this section, we discuss in more details on Assumption 1 and the two approaches
as well as the formulations of a special case.
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4.1 Independence assumptions

The independence assumption which states thatξ is composed of two independent
partsξ1 and ξ2 is not restrictive in many cases. For instance, whenξ is normally
distributed with mean vectorµ and covariance matrixΣ, thenξ = µ + AzwhereΣ =
AAT andz = (z1, . . . , zd)T is a vector whose components are independent standard
normal variables. Thus by replacingξ by µ + Az in chance constraint (1b), the new
random vector within the constraints satisfies the assumption.

4.2 Convexity results of PSAA

It is well known that the feasible set of Problem (1a) is generally nonconvex even
if the setX is convex and the functiong j(x, ξ) is concave inx. However, there are
still some convexity results on chance constrained problems under given assump-
tions. For instance, under multivariate normal distribution, an individual chance con-
straint of bilinear model is a second-order constraint, which is convex, whenη ≤ 0.5.
Here we present one of the most general results of convexity given by Shapiro et
al. [Shapiro et al., 2009]:

Theorem 2 Let gj(x, y), j = 1, . . . ,m be quasi-concave functions on Rn+d where x is
an n-dimensional vector and y is a d-dimensional vector. Ifξ ∈ Rd is a random vector
that has aα-concave probability distribution whereα ∈ [−∞,∞], then the function

H(x) = P{g j(x, ξ) ≥ 0, j = 1, . . . ,m} (12)

is α-concave on the set

D = {x ∈ Rn : ∃ξ̄ ∈ Rd such that gj(x, ξ̄) ≥ 0, j = 1, . . . ,m}.

Accordingly, under the assumptions of Theorem 2, a corollary on the convexity
follows.

Corollary 1 Assume that gj(x, y) : Rn×Rd, j = 1, . . . ,m be quasi-concave functions
andξ ∈ Rd is a random vector that has anα-concave probability distribution. Then
the following set is convex and closed

{x ∈ Rn : P{g j(x, ξ) ≥ 0, j = 1, . . . ,m} ≥ p} (13)

where p∈ (0, 1].

According to Theorem 2, whenξ2 has a logconcave probability distribution and
g j(x, ξ̂t1, ξ2) is quasi-concave functions of (x, ξ2), P{G(x, ξ̂t1, ξ2) ≥ 0} is logconcave.
HoweverpN(x) is not logconcave, as logconcavity does not carry over fromterms to
their sum [Prékopa, 2001,Prékopa, 2003], whereas concavity does carry over. There-
fore, to explore the convexity of PSAA problem, we seek the concavity ofP{G(x, ξ̂t1, ξ2) ≥
0}.
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4.2.1 Preliminaries

Before presenting the convexity results, we introduce a newdefinition as follows:

Definition 3 (Concave point) z∗ is said to be aconcave pointof a random variable
ξ, if the cumulative distribution functionΦ(z) of ξ is concave for allz≥ z∗.

Evidently, if z∗ is a concave point ofξ, thenz′ is also a concave point whenever
z′ ≥ z∗. Whenξ is univariate and has the standard normal distribution, then 0 is a
concave point ofξ and further it is the minimal concave point. For the other univariate
distributions, the minimal concave point is listed in Table1.

Table 1 Table of selected univariate distributions

Distribution Density function z∗

Normal 1√
2πσ

exp(− (z−µ)2
2σ2 ) µ

Exponential λexp(−λz) z≥ 0 0

Uniform 1
b−a a ≤ z≤ b a

Welbull abzb−1 exp(−azb) z≥ 0
0 0< b ≤ 1

( b−1
ab )

1
b 1 < b

Gamma zk−1e−
z
θ

θkΓ(k)
z> 0

0 0< k ≤ 1
(k− 1)θ 1 < k

Student
Γ( ν+1

2 )
√
νπ Γ( ν2 )

(

1+ t2
ν

)− ν+1
2

0

Although Table 1 collects many minimal concave point for many popular different
distributions, it is hard to determinez∗ for the multivariate variables. The following
relevant result was given by Prékopa [Prékopa, 2001,Prékopa, 2003]:

Theorem 3 Φ(z1, ..., zn; R) is concave in the set{z|zi ≥
√

n− 1, i = 1, ..., n}, where
Φ(z1, ..., zn; R) is the n-variate standard normal probability distributionfunction with
correlation matrix R.

According to Theorem 3, (
√

n− 1, ...,
√

n− 1) is a concave point ofn-variate
standard normally distributed variables with any correlation matrix R. However it
is difficult to find the minimal (or Pareto) concave point even for normally distributed
vector.

We reconsider the chance constraint (9b) with the followingform:

P{g j(x, ξt1) ≥ ξ2j ≥ 0, j = 1, . . . ,m} ≥ 1− η. (14)
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Theorem 4 Assume that gj(x, ξ̂t1) j = 1, . . . ,m be concave functions of x and there
exists a concave point z∗ = (z∗1, ..., z

∗
m) of ξ2, we have gj(x, ξ̂t1) ≥ z∗j for any x ∈ X.

Then the following set is convex

X0(ξt1) := {(x; yt) ∈ Rn+1 : P{g j(x, ξ̂
t
1) ≥ ξ2j , j = 1, . . . ,m} ≥ yt, x ∈ X}. (15)

Therefore the feasible set of problem PSAA is convex.

Proof. Let G0(x) := P{g j(x, ξ̂t1) ≥ ξ2j , j = 1, . . . ,m} andΦ(z) be the cumulative
distribution function ofξ2 , which is non-decreasing function. Based on Definition
3, Φ(z) is concave whenz ≥ z∗. Further asg j(x, ξ̂t1) is concave function ofx and
g j(x, ξ̂t1) ≥ z∗j for anyx ∈ X, thusG0(x) is concave onX. For any two points (x1, yt1)
and (x2, yt2) in the setX0(ξt1), andλ ∈ [0, 1], we have

G0(λx1 + (1− λ)x2) ≥ λG0(x1) + (1− λ)G0(x2) ≥ λyt1 + (1− λ)yt2

which concludes the proof. �

Example

We consider a simple example to verify Theorem 4 as follows:

min cT x (16a)

s.t. P{ξT1 x ≥ ξ2} ≥ p (16b)

x ≥ 0 (16c)

wherec ∈ Rn is a deterministic cost vector,ξ1 ∈ Rn andξ2 ∈ R are random and both
are assumed uniformly distributed. If the lower bound ofξ2 is 0 and the lower bound
of ξ1 ≥ 0, then its corresponding PSAA problem is a convex problem, as the minimal
concave point ofξ2 is 0.

4.3 Comparison between PSAA and SAA

Since PSAA and SAA problems have the same underlaying idea, i.e., the original
distribution of the random vector is replaced by its empirical distribution obtained
from N independent samples, They have the same basic properties, namely conver-
gence properties. In the following, we present some resultson convergence property
for PSAA, whereas there are similar results about convergence property for the SAA
problem in the paper of Pagnoncelli et al. [Shapiro et al., 2009,Pagnoncelli et al., 2009].
First of all, we denote byf ∗, f ∗S AA and f ∗PS AA the optimal values of the original prob-
lem, the SAA and the PSAA problem respectively, whileS, SS AA andSPS AAare the
set of the optimal solutions defined accordingly. We modifiedrecall two definitions.

Definition 4 Function fN is said to epiconverge tof , written as fN
e−→ f , if for a.e.

ω ∈ Ω the functionsfN(·, ω) epiconverge tof (·).
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Definition 5 Functiong(x, ξ) is said to be aCarathéodory function, i.e., g(x, ξ) is
measurable for everyx ∈ Rn andg(x, ξ) is continuous for a.e.ξ ∈ Ξ.

Proposition 1 Let G(x, ξ1, ξ2) := min1≤ j≤m g j(x, ξ1, ξ2) be aCarathéodoryfunction.

Then pN(x)
e−→ p0(x) w.p.1. Furthermore, suppose that there is an optimal solution x∗

of the original problem (i.e., problem (1a)), such that for any ǫ > 0, there is x∈ X
with ||x− x∗|| ≤ ǫ and p0(x) > 1− η, the set X is compact and the objective function
f (x) is continuous. Then f∗PS AA→ f ∗ andD(SPS AA,S)→ 0 w.p.1 as N→ ∞, where
D(A, B) denotes the deviation of set A from set B.

Proof. Let p̄0(x) = 1− p0(x), p̄N(x) = 1 − pN(x) and,S̄ andS̄PS AA be the comple-
ments of setsS andSPS AA respectively. We first prove that ¯pN(x) is lower semicon-
tinuous. Since the indicator function on the open set is semicontinous and̄G(x, ξ̂t1, ξ2)
is a Carathéodoryfunction, thenI(G(x, ξ̂t1, ξ2) < 0) is random lower semicontin-
uous. Then following Fatou’s lemma (see Theorem 7.51 in [Shapiro et al., 2009]),
Eξ2[I(G(x, ξ̂t1, ξ2) < 0)] is lower semicontinuous. By Applying Fatou’s lemma again,

p̄N(x) = 1−pN(x) =
∑N

t=1 Eξ2 [I(G(x,ξ̂t1,ξ2)<0)]
N is lower semicontinuous. As 0≤ Eξ2[I(G(x, ξ̂t1, ξ2) <

0)] ≤ 1 and N samples are independent and identically distributed, then we have

p̄N(x)
e−→ p̄0(x) w.p.1 based on the results of Theorem 7.51 in [Shapiro et al., 2009].

Therefore,pN(x)
e−→ p0(x) w.p.1.

For the remaining proof, it follows the same procedure of theproof of Proposition
5.30 in [Shapiro et al., 2009] (or proof of Proposition 2.2 in[Pagnoncelli et al., 2009]).
Thus we refer to the reader to [Shapiro et al., 2009] or [Pagnoncelli et al., 2009] for
more details. �

4.4 Special case

In this subsection, we present a special case of problem (1) where its subsequent
PSAA approximation is tractable.

A bilinear chance constrained problem is considered with the following formula-
tion:

min f (x) (17a)

s.t. P{M(x)ξ1 ≥ ξ2em} ≥ 1− η (17b)

x ∈ X (17c)

whereM(x) ∈ Rm×d1 is a affine matrix ofx, em ∈ Rm is all-ones vector,ξ1 ∈ Rd1 and
ξ2 ∈ R are random variables.

Theorem 5 If ξ2 is uniformly distributed on the interval[L,U], then the correspond-
ing PSAA problem of the bilinear problem has a conservative (or safe) approximation
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as follows:

min f (x) (18a)

s.t.
M(x)ξ̂t1 − Lem

U − L
≥ ytem, t = 1, ...,N (18b)

∑N
t=1 yt

N
≥ 1− η (18c)

yt ≤ 1; t = 1, ...,N (18d)

x ∈ X (18e)

Moreover, if there is an optimal solution of the PSAA problemdenoted by xPS AAsuch
that for any samplêξt1, t = 1, ...,N such that M(xPS AA)ξ̂t1 ≥ Lem, then xPS AA is also
the optimal value of the conservative problem.

Proof. Let (xf ea, yf ea) be a feasible solution of problem (18), i.e, the conservative
approximation problem. With the PSAA method, the chance constraint (17b) is ap-
proximated by the following constraint:

∑N
t=1 P{M(x)ξ̂t1 ≥ ξ2em}

N
≥ 1− η (19)

Let zt = P{M(xf ea)ξ̂t1 ≥ ξ2em}. Sinceξ2 is uniformly distributed on the interval [L,U],
then we have:

zt =



























0 if min{M(xf ea)ξ̂t1} < L
min{M(xf ea)ξ̂t1}−L

U−L if L ≤ min{M(xf ea)ξ̂t1} ≤ U

1 if U ≤ min{M(xf ea)ξ̂t1}
(20)

Further, as (xf ea, yf ea) is a feasible solution of problem (18), we haveyf ea
t ≤ 1,

∑N
t=1 yf ea

t

N ≥ 1 − η and
M(xf ea)ξ̂t1−Lem

U−L ≥ yf ea
t em . Thus, we conclude thatzt ≥ yt, which

leads to the conclusion that
∑N

t=1 zt

N ≥ 1− η. Therefore,xf ea is also a feasible solution
of the PSAA problem and problem (18) is a conservative approximation of PSAA
problem.

Let xPS AA be an optimal solution of the PSAA problem which satisfies thecon-
straint M(xPS AA)ξ̂t1 ≥ Lem. Let πt = P{M(xPS AA)ξ̂t1 ≥ ξ2em}. Then we haveπt ≤
min{1, min{M(xPS AA)ξ̂t1}−L

U−L } and
∑N

t=1 P{πt}
N ≥ 1 − η. Thus (xPS AA, π1, ..., πN) is a feasible

solution of problem (18). Moreover, it is shown that problem(18) is a conservative
approximation of the PSAA problem. Therefore, (xPS AA, π1, ..., πN) is the optimal so-
lution of problem (18). �

Note that there is no assumption on the distribution ofξ1. Moreover, the corre-
sponding SAA problem of the bilinear problem is a mixed integer linear problem.
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4.5 Convexity results of PSA

The variablesyt are fixed in PSA problem, i.e.,yt = 1− η. Therefore, PSA has more
general convexity results than PSAA as shown by the following corollary:

Corollary 2 Assume that gj(x, ξ̂t1, ξ2) : Rn×Rd2, j = 1, . . . ,m be quasi-concave func-
tions andξ2 ∈ Rd2 is a random vector that has anα-concave probability distribution.
Then the following set is convex

X1(ξ̂t1) := {x ∈ Rn : P{g j(x, ξ̂t1, ξ2) ≥ 0, j = 1, . . . ,m} ≥ 1− η}. (21)

Therefore the feasible set of PSA problem is convex.

4.6 Comparison between PSA and SA

In parallel with Theorem 1 for SA method, we also give a prior estimation of sample
sizeN such that the optimal solution of the PSA problem is feasibleto the original
problem with high probability.

Theorem 6 For the PSA problem with a confidence parameterη′ < η, we assume
that X is a convex and closed set, f(x) is linear, i.e., f(x) = cT x, G0(x, ξ1) :=
Pξ2{g j(x, ξ1, ξ2) ≥ 0, j = 1, ...,m} is continuous and convex in x for anyξ ∈ Ξ1.

Further, assume that for all the scenario samples
−→̂
ξ1 = {ξ̂11, . . . , ξ̂

N
1 }, the PSA prob-

lem (11) is either unfeasible, or it has an unique optimal solution x∗(
−→̂
ξ1) if feasible.

Givenβ ∈ (0, 1] and η̄ = η−η
′

1−η′ , if the sample size N satisfies the relation

N ≥ N∗ := ⌈2
η̄

(log
1
η̄
+ n)⌉,

then,P−→̂
ξ1
{x∗(
−→̂
ξ1) is either undefined or feasible for problem(1a)} ≥ 1− β.

Proof. First, we reformulate the PSA problem with a confidence parameter η′ as
follows:

min cT x (22a)

s.t. 1− η′ −G0(x, ξ̂t1) ≤ 0, t = 1, ...,N (22b)

x ∈ X (22c)

Next, following the idea of the scenario approach, the original problem of prob-
lem (22) is

min cT x (23a)

s.t. Pξ1{1− η′ −G0(x, ξ1) ≤ 0} ≥ 1− η̄ (23b)

x ∈ X (23c)
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We denote the optimal solution of problem (22) byx∗(
−→̂
ξ1). According to Theo-

rem 1,

N ≥ N∗ := ⌈2
η̄

(log
1
η̄
+ n)⌉,

thenP−→̂
ξ1
{x∗(
−→̂
ξ1) is either undefined or feasible for problem (23)} ≥ 1−β.Whenx∗(

−→̂
ξ1)

is feasible for problem (23), then one has

Pξ1{1− η′ −G0(x∗(
−→̂
ξ1), ξ1) ≤ 0} ≥ 1− η̄

By introducing auxiliary random variableδ = G0(x∗(
−→̂
ξ1), ξ1) ≥ 0, we have

Pξ1{1− η′ −G0(x∗(
−→̂
ξ1), ξ1) ≤ 0} = Pδ{1− η′ ≤ δ} ≤

Eδ[δ]
1− η′

where the last inequality is theMarkov inequality. Thus, it follows thatEδ[δ]1−η′ ≥ 1− η̄.

Furthermore asEδ[δ] = Eξ1[G0(x∗(
−→̂
ξ1), ξ1)] = P{g j(x∗(

−→̂
ξ1), ξ̂1, ξ2) ≥ 0, j = 1, ...,m},

then

P{g j(x
∗(
−→̂
ξ1), ξ̂1, ξ2) ≥ 0, j = 1, ...,m} ≥ (1− η̄)(1− η′) = 1− η

where the last inequality is due to ¯η = η−η′
1−η′ . Thus, we have the conclusion that

P−→̂
ξ1
{x∗(
−→̂
ξ1) is either undefined or feasible for problem (1a)} ≥ 1− β. �

5 Numerical experiments

In this section, a simple example and asupply/demand equilibrium problemare con-
sidered to evaluate numerically the performance of our proposed approaches, i.e.,
PSAA and PSA methods. All the considered problems are solvedusing CPLEX
12.6 [CPLEX, 2010] with its default parameters on two different configurations: an
Intel(R)D @ 2.00 GHz with 4.0 GB RAM for the simple example and an Intel(R)
Core(TM) i7-4600U @ 2.10 GHz 2.70 GHz with 16.0 GB RAM for thesupply/demand
equilibrium problem.

5.1 Comparisons of the proposed methods via a simple example

Let us consider the following simple example:

min cT x (25a)

s.t. P{ξT1 x ≥ ξ2} ≥ 1− η (25b)

x ≥ 0, (25c)

wherec ∈ Rn is a deterministic cost vector,ξ1 ∈ Rn andξ2 ∈ R are random and both
are assumed uniformly distributed.
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Even with only one constraint, problem (25) is still NP-hardas shown by Ne-
mirovski and Shapiro [Nemirovski and Shapiro, 2006] whenξ1 is independently uni-
formly distributed in a box andξ2 is deterministic.

The assumptions and the parameters are set as follows:n = 10, η = 0.1, c is
uniformly generated on the interval [10, 100]. ξ1 and ξ2 are indepently uniformly
distributed. the upper bound ofξ1 is uniformly generated on the inverval [10, 20]
while the lower bound ofξ1 is uniformly generated on the inverval [5, 10]. The upper
bound ofξ2 is uniformly generated on the inverval [50, 100] while the lower bound
of ξ1 is uniformly generated on the inverval [0, 50].

We compared our two proposed methods with SAA approach and the scenario
approach. For the bilinear constraint problem with an uniform distribution ofξ2, the
corresponding SA approximation and PSA approximations arelinear problems while
its SAA approximation is a mixed inter linear problem.

However, PSAA approach problem is not linear as it contains joint probabilistic
constraints; but for problem (25) we have a conservative linear approximation as
shown by Theorem 5.

The results are reported in Table 2 where column 1 gives the number of scenarios.
Columns 2, 3, 4 and 5 present the objective value, the CPU time and the probability
threshold of SA, PSA, SAA and PSAA respectively.

No. of Scenario SA PSA SAA PSAA

N=100 147.84 141.60 118.78 119.05
CPU(seconds) 0.01 0.01 13.67 0.02

Probability 0.9965 0.9963 0.8883 0.8949

N=1000 155.47 151.22 119.42 119.97
CPU(seconds) 0.02 0.02 70.05 0.09

Probability 0.9996 0.9971 0.8917 0.9012

N=10000 157.73 152.65 120.11 120.15
CPU(seconds) 0.05 0.05 10815 0.67

Probability 0.9998 0.9975 0.9031 0.9019

Table 2 Computational results of the simple example.

We can see in Table 2 that SA and PSA have comparable performances in terms
of CPU time and the quality of the solutions. This is due to thefact that in both
approaches we solve linear programs. Furthermore, PSA solution is better than SA
solution, since PSA approach cost is less than SA one. However, the results of SAA
and PSAA are different especially in terms of CPU time. In deed, PSAA outperforms
SAA as we solve integer linear programs in SAA and continuousones in PSAA. Ad-
ditionally, PSAA is slightly more conservative than SAA. Tothe best of our knowl-
edge, such performances have not been reached so far in sample approximation the-
ory.
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5.2 Problem of supply/demand equilibrium under uncertainty

In this section we consider a supply-demand equilibrium problem which is also dis-
cussed by Gorge [Gorge, 2013]. This problem is taken from theelectrical industry
and is a sub-problem of the Unit Commitment Problem (UCP), aiming at minimiz-
ing the global production cost while satisfying the supply-demand balance and the
operational constraints of a mix of power generation units (hydraulic valleys, nuclear
plants and classical thermal units - coal, fuel and gas-) fora discrete time-period.

We propose the following concise formulation that emphasizes the structure of
the problem :

min
∑n

i=1
∑T

t=1 ci,txi,t

s.t. P{
∑n

i=1 Ãi,txi,t ≥ D̃t =
∑m

j=1 bt, jD̃ j , t = 1, ...,T} ≥ 1− η
∑T

t=1 xi,t ≤ r iT, i = 1, ..., n
0 ≤ xi,t ≤ 1, i = 1, ..., n, t = 1, ...,T

(26)

where

– ci,t is the production cost for the planti at time stept;
– r i is the maximum proportion that the prescribed planti will be used over the time-

horizon. These constraints represents the necessity of shutting down the plants to
proceed to maintenance operations for instance;

– xi,t is the command variable of the plant uniti at time stepst ;
– xt = (x1,t, ..., xn,t), t = 1, ...,T;
– Ãt = (Ã1,t, ..., Ãn,t) : a random vector representing the availability of the produc-

tion units at time stept;
– D̃t : a random variable representing the total demand at time step t;
– (D̃1, ..., D̃m) : a random vector on which̃Dt depend linearly whereasbt, j is the

subsequent coefficient.

For the sake of simplicity, we assume thatÃt andD̃ j are independently uniformly
distributed. The lower bound and upper bound ofÃi,t are uniformly generated on the
interval [20, 60] and [60, 110] respectively, whilst the lower bound and upper bound
of D̃ j are uniformly generated on the interval [10, 30] and [30, 50] respectively. The
other parameters are set as follows:n = 30,T = 10,m= 10,c is uniformly generated
on the interval [0, 100], while r is also uniformly generated on the interval [0.6, 1].
bt, j is uniformly generated on the interval [1, 3]. Moreover, six confidence parameters
are considered, precisely,η = 0.30, 0.25, 0.20, 0.15, 0.10, 0.05.

Numerical results are given by Table 3 where the columns givethe same infor-
mation results as Table 2 but for six different values ofη. We can observe that SA
approach has comparable CPU time and slightly better solution than PSA approach
whenη is larger than 0.85. At the opposite, PSA approach has better solution when
η < 0.85. However, it is totally different case for PSAA and SAA approaches. PSAA
results are of different order of magnitude than SAA. Asη increases, SAA fails to
solve the sample problem especially whenN increases. This is mainly true when
η = 0.3 whatever the size of the samples whilst PSAA solves the largest instance, i.e.,
N = 10000 within 10 seconds. Moreover, only instances withN = 500 are solved by
SAA. Whenη = 0.25 andN = 500, the CPU time required to solve this instance is
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greater than two hours. This is due to the high number of variablesyt which are equal
to one. Therefore, there are more feasible solutions to explore whenη increases.

p = 0.95 SA PSA SAA PSAA p = 0.90 SA PSA SAA PSAA
N=500 1958.7 2087.3 1691.0 1823.8 N=500 1958.7 2050.3 1586.4 1731.2
CPU(S) 0.01 0.01 10.47 0.02 CPU(S) 0.01 0.01 67.23 0.02

Prob 0.951 0.987 0.915 0.936 Prob 0.951 0.983 0.855 0.903

N=1000 2155.4 2254.6 1704.6 1850.9 N=1000 2155.4 2219.5 1594.1 1751.2
CPU(S) 0.05 0.04 691.56 0.79 CPU(S) 0.05 0.04 5013.6 0.47

Pro 0.984 0.992 0.918 0.945 Prob 0.984 0.991 0.860 0.909

N=10000 2404.5 2491.9 – 1874.6 N=1000 2404.5 2474.0 – 1766.7
CPU(S) 0.59 0.60 – 13.97 CPU(S) 0.59 0.51 – 10.31

Prob 0.998 0.999 – 0.957 Prob 0.998 0.999 – 0.921

p = 0.85 SA PSA SAA PSAA p = 0.80 SA PSA SAA PSAA
N=500 1958.7 2013.3 1520.2 1665.8 N=500 1958.7 1977.1 1468.9 1619.5
CPU(S) 0.01 0.01 362.25 0.02 CPU(S) 0.01 0.01 965.53 0.04

Prob 0.951 0.979 0.791 0.874 Prob 0.951 0.974 0.757 0.846

N=1000 2155.4 2180.4 – 1681.4 N=1000 2155.4 2142.4 – 1630.7
CPU(S) 0.05 0.03 – 0.53 CPU(S) 0.05 0.03 – 0.46

Prob 0.984 0.987 – 0.882 Prob 0.984 0.983 – 0.847

N=10000 2404.5 2465.6 – 1697.9 N=1000 2404.5 2401.2 – 1645.6
CPU(S) 0.59 0.50 – 10.35 CPU(S) 0.59 0.59 – 9.96

Prob 0.998 0.998 – 0.889 Prob 0.998 0.998 – 0.854

p = 0.75 SA PSA SAA PSAA p = 0.70 SA PSA SAA PSAA
N=500 1958.7 1942.1 1424.4 1579.5 N=500 1958.7 1908.2 – 1545.3
CPU(S) 0.01 0.01 8079.3 0.82 CPU(S) 0.01 0.01 – 0.04

Pro 0.951 0.969 0.711 0.820 Prob 0.951 0.962 – 0.791

N=1000 2155.4 2106.9 – 1589.3 N=1000 2155.4 2072.3 – 1553.7
CPU(S) 0.05 0.03 – 0.43 CPU(S) 0.05 0.03 – 0.41

Prob 0.984 0.977 – 0.818 Prob 0.984 0.971 – 0.778

N=10000 2404.5 2369.3 – 1602.7 N=1000 2404.5 2323.1 – 1565.9
CPU(S) 0.59 0.51 – 9.76 CPU(S) 0.59 0.47 – 9.77

Prob 0.998 0.998 – 0.829 Prob 0.998 0.998 – 0.798

Table 3 Computational results of supply/demand problem. “–” indicates that no optimal solutions within
two hours

6 Conclusions

In this paper, we present a new sample approximation method for chance constrained
problems called Partial SAA (PSAA). We show that our approach enjoys partially
the same properties as the standard sample approach. Moreover, we show that PSAA
problem is convex in some cases while the standard sample average approximation
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(SAA) is a mixed integer problem. Meanwhile, a new definitionof concave points is
introduced for the first time to the best of our knowledge, andplays an important role
in the convexity of the probability distribution. Some results on the concave points
are presented as well. Our numerical results show the high performances of PSAA
for solving large size instances with up to 10000 samples compared to standard SA
and SAA approaches. It is easy to see that PSAA can be used for solving a wide range
of stochastic problems using a sample approximation with a highly competitive CPU
time and slightly more conservative bounds. In addition, future work related to PSAA
approach could lies in different directions, e.g., consider more general models with
more general distributions, and relax some considered assumptions.. . .
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