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Abstract In this paper, we present a new scheme of a sampling methoolve s
chance constrained programs. First of all, a modified sam@eage approximation,
namely Partial Sample Average Approximation (PSAA) is preéed. The main ad-
vantage of our approach is that the PSAA problem has onlyirmomis variables

whilst the standard sample average approximation (SAAjains binary variables.

Although our approach generates new chance constraintshoxe that such con-
straints are easily tractable. Moreover, it is shown thad®R8as the same conver-
gence properties as SAA. Finally, numerical experimergscanducted to compare
the proposed approximation to SAA in order to show the stitenfour new sample

method.
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1 Introductions

In this paper, we focus on the following chance constrairretlpms:

min () (1)
(CCP st po(X) :=P{gj(x,&)=0,j=1,..m=>1-p (1b)
X € X, (1c)

wheref : R" —» Ris a convex objective functiorX c R" is convex and represents a
set of additional deterministic constraingss RY is random vector with a distribution
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F and its supporf € RY, g; : R"x £ — Rare given constraint mapping functions,
n € (0,1] is a confidence parameter, apg(X) is the feasible probability ok € X.
Constraint (1b) is called chance (or probabilistic) coaistr Furthermore, we only
use a single probability constraint on all the rows in thestm@intsg;(x,£) > 0
rather than requiring each row to be satisfied with high pbdiindividually. Such

a constraint is known asjaint chance constraintwhereas it is called andividual
chance constrainivhenm = 1.

Since chance constrained programming was firstly introdbgeCharnes, Cooper
and Symonds in [Charnes et al., 1958], it has attractedfgignt attention of many
researchers and practitioners as it is widely applied irbadbrange of areas, such as
finance, transportation and energy[Andrieu et al., 2010,Cheng and Lisser, 2012,
Cheng and Lisser, 2013, Cheng and Lisser, 2014, DentcheMBaszczyhski, 2006].
However, a little progress has been made for solving suchl@nts at least for two
reasons. First, the feasible set of CPP is generally nomcoeven if the set X is
convex and the functiogj(x, £) is concave inx. SecondP{gj(x,¢) > 0,j = 1,...m}
with a fixedx € X is generally hard to compute, as it requires multi-dimemaio
integrations. For instance, Nemirovski and Shapiro [Newski and Shapiro, 2006]
stated that evaluating the distribution of a weighted sumniformly distributed in-
dependent random variables is NP-hard. For a compreheogar@iew on theory
and applications of chance constrained problems, we rfe¢aretader to the books of
Prékopa [Prékopa, 1995] and Shapiro et al. [Shapiro g2@09].

As chance constrained problems are computationallycdit, most of litera-
ture approaches use approximation schemes. Generallyofgdving methods on
chance constrained problems are twofold: on one hand, ganvteactable approxi-
mations (see, e.g., [Nemirovski and Shapiro, 2006, Chetiab,2012] ). In [Nemirovski and Shapiro, 2006],
Nemirovski and Shapiro built a large deviation-type appration, referred to as
Bernstein approximatignwhile Cheung et al. [Cheung et al., 2012] established a
new large deviation bounds for the stochastic linear mat@qualities. The other
approach consists in discretizing the probability disttin and solving the ob-
tained equivalent deterministic problem. Precisely, éhare two discretization ap-
proaches: one assumes that distributions of random vasaltve discrete (see, e.g.,
[Dentcheva et al., 2000, Luedtke et al., 2010]). Dentchegh[®entcheva et al., 2000]
introduced the concept of@efficient point of a probability distribution and then de-
rived various equivalent problem formulations, while Ltledet al. [Luedtke et al., 2010]
gave two strengthened formulations for linear programh yeiint probabilistic con-
straints where only the right-hand side is random. The aiheruses sample approxi-
mation methods to approximate original problems (see,[egedtke and Ahmed, 2008,
Pagnoncelli et al., 2009]), which replaces the probabdistribution by its empir-
ical distribution obtained from Monte Carlo sampleséofAmong the sample ap-
proximations in the literature, there are three popularhoes:scenario approach
[Calafiore and Campi, 2005, Calafiore and Campi, 2088) approacilLuedtke and Ahmed, 2008,
Pagnoncelli et al., 2009], amdnstraint removal approadCampi and Garatti, 2011,
Pagnoncelli et al., 2012]. The scenario approach was finstipduced by Califiore
and Campi[Calafiore and Campi, 2005, Calafiore and Campb,Zdmpi et al., 2009],
where all the sampled constraint sets are satisfiedgj@.¢) > 0, j = 1, ..., mis sat-
isfied for all the Monte Carlo samples 6f The main advantage of this approach is
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that a feasible solution is provided when the number of sasiglis large enough.
Moreover, ifgj(x,€), j = 1,...,mis concave irx, then the subsequent problem is a
convex problem. However, whepis not small enough, e.g., 0.1, then the obtained
solution is feasible to the problem but usually costly. lhestwords, for not small
enoughn, the scenario approach is too conservative. To overconsedifawback,
an alternative sample approximation is the SAA approachrevbely a subset of
sampled constraint sets is satisfied. Wheis large enough, the SAA approach pro-
vides a near-optimal solution. Further, the obtained smiutonverges to the opti-
mal solution of the original problem w.r.t. some conditipRagnoncelli et al., 2009].
Besides, there are ftierent variants of SAA approach to solve chance constrained
problems. Hong et al. [Hong et al., 2011] proposed to refdateuthe chance con-
straint by a diference of convex (DC) functions, and then approximated tie D
function by a sequence of convex problems and the limit ofséguence solutions
is a Karush-Kuhn-Tuck (KKT) point of the original problemuther as the func-
tions in the DC formulations are hard to evaluated, theyiad@BAA approach to
solve the convex problems. Anotherférent SAA approach is proposed by Bar-
rera et al. [Barrera et al., 2014] where the confidence paemeis quite small,
e.g., 10°. They pointed out that the existing sampling-based algorit require an
impractical number of samples to yield reasonable solstemd thus proposed a
variance-reduced SAA approach by using importance samchniques. However,
the SAA problem is still hard to solve as it is a mixed integptimization problem
with N binary variables. To avoid this drawback, the constraintaeal approach
[Campi and Garatti, 2011, Pagnoncelli et al., 2012] was psed in order to provide
better solutions than the scenario approach and with le&s$ e than SAA ap-
proach. The constraint removal approach consists in distaa subset of sampled
constraints using a heuristic algorithm, e.g., greedyrélyo, to solve the original
problem.

In this paper, we present a modified sample average apprtgimaamely Par-
tial Sample Average Approximation (PSAA), to solve the atenonstrained prob-
lems, which makes full use of some independence informdween the random
variables. In contrast to the traditional SAA approach, R$Aoblem has only con-
tinuous variables whilst the standard sample average ajppation (SAA) contains
binary variables. Despite that new chance constraints @emergted in PSAA, it is
shown that such constraints are easily tractable in margscase remainder of this
paper is organized as follows. In section 2 we present alddtstudy of the scenario
approach and the traditional SAA approach. In section 3 t&/Aapproach is in-
troduced as well as the underlaying idea. Convexity and @g@nce properties for
the PSAA approach are given in section 4. In section 5, weeptesur numerical ex-
periments on the flierent sample approximation approaches. Conclusions &umnafu
research discussions are given in the last section.

2 Scenario approach and SAA method

Under the assumption that we can sample from the distribiicthe scenario ap-
proximation(SA) [Calafiore and Campi, 2005, Calafiore and Campi, 2006hahce
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constrained problem (1a) is as follows:

min  f(x) (2a)
st. gj(x&)>0, j=1,....mt=1,...,N (2b)
X e X, (2¢)

where the scenariag, ..., &N are assumed to be independent and sampled from the
distributionF. For the quality of the approximation, One relevant resuljiven by
Campi et al. [Campi et al., 2009] as follows:

=2 . N

Theorem 1 Assume that for all the scenario samples= {£2, ..., &V}, the scenario

approximation (2) is either unfeasible, or, if feasibleaitains an unique optimal
—

solution x(&). Giveng € (0, 1], if the sample size N satisfies the relation

N> N*:= {E(IogE +n)7,
noB

(I-1 denotes the smallest integer which is greater than or equidé argument) then,
=
P?{x*(g) is either undefined or feasible for problgfia)} > 1 - .

WhenX e R"is a convex set and; is concave inx for eaché, the scenario
approximation is a convex problem. One advantage of thiscamb is that there
is no restriction on the distribution a&f but only the assumption that samples can
be obtained. However, Luedtke and Ahmed [Luedtke and Ah2@@8] pointed out
that the approach is too conservative, as it requires thataipled constraint sets
be satisfied. An alternative approactSiample Average Approximati¢8AA) where
the probability distribution is replaced by its empiricastdibution obtained from
Monte Carlo samples of. The key diference between the two approximations is
that SAA approach chooses part of sampled constraint sgit®rrthan all the sets, to
be satisfied. Accordingly, the SAA of Problem (1a) is

min  f(x) (3a)
1 5 :
t=1
Xe X, (3¢)

Wherel(-) is the indicator function which takes value one whes true and zero
otherwise. Whem = 0, it becomes the scenario approach. By applying the “big-M”
method, we have the equivalent formulation of the SAA probées follows:

min  f(X) (4a)

st. gj(%&)+My; >0, j=1..mt=1.,N (4b)
N

—thlet < (4¢)

Vi e{0,1}, t=1,...N,xe X, (4d)
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whereM is large enough such thg;(x,gt) +M>0,j=1,.mt=21.,N.lItis
observed that the new formulation is a mixed integer proldecause of the binary
variablesy;. Thus, the SAA problem is hard to solve when the number of $asip
becomes large.

3 Modified Sampling methods

Before we give the scheme of our approach, we present thedseyrgotion of the
modified sample method.

Assumption 1. We assume that = (&1, &), further &, and & are independently
distributed.

Without loss of generality, the dimensions of vectgrandé, are assumed to be
d; andd, respectively. It is easy to see that the dimension of theové&as d = d; +d,.

Lemma 1 Let X and Y be independent integrable random variables &rgd/gbe a
real-valued function. If the expectation qPqY) exists, then

E[g(X, V)] = ExEv[9(X, Y)] = EvEx[9(X, Y)] (5)

Proof. Let fxy(x,y) be the joint probability density function of andY whereas
fx(X) andfy(y) are the marginal density functionsXfandY respectively. A andY

are independent, thely (X, y) = fx(X) fy(y). Further withE[g(X, Y)] = ffg(x, y) fx v(X, y)dxdy,
we have

Elo0 V) = ([ ox i fdxdy= [ ( | g(x,y>fy(y)dy) f()dx

- f ( f a(x.y) fx(x)dx) fy(y)dy = ExEx[g(% Y)] = EvEx[g(X, Y)
O

We reconsider the chance constraint (1b) with Assumptidiirét, the probability
is represented as an expectation:

Po(X) = P{G(X, &1, &2) > 0} = E[I(G(X, &1, £2) > 0)]

whereG(x, é1, £2) 1= Mini<j<m gj(X, €1, £2). According to the results of Lemma 1, the
chance constraint (1b) is equivalent to the following coaist:

Po(X) = Eg, (Be, [I(G(X,é1,£2) 2 0)]) > 1 - p

Applying the same idea of SAA method, we replace the distidiouof £1 with its
empirical distribution based on Monte Carlo samples. Maegisely,

N G ’At, > 0
Ee, (Be,[I(G(X, €1, £2) > 0)]) ~ Lt Be[I( (';( £,6) > 0)]

I PG(x.EL, &) 2 0)
N N
Where%, é’l\' are independent Monte Carlo samples of the random varable
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Definition 1 (Partial sample average approximatior) Leté}, é’l\' be independent
Monte Carlo samples of the random variabje Then, we have a sampled program
of CPP as follows:

min  f(x) (9)
N ot

st. pn(X) = thlp{e(xl’fl’&) =0 >1-7p (9b)

X € X, (9¢)

which is equivalent to

V(PSAA :=min f(x) (10a)
st. P(gj(x,&.,&)>0,j=1,..,m >y, t=1,..,N (10b)

(PSAA % >1-1n (10¢)

V> 0;t=1..,NxeX (10d)

Comparedto SAA approach[Luedtke and Ahmed, 2008, Pagiibeical., 2009],
the main advantage of our approach is that PSAA problem Hgscontinuous vari-
ables whilst SAA problem contains binary variables thougtvichance constraints
are generated in PSAA problem. We show that such constraiateasily tractable
in some cases. However, both PSAA and SAA share the samehidethé original
distribution of the random vector is replaced by its empiridistribution obtained
from N independent samples.

PSAA problem becomes easier to solve if variaglés fixed. In order to seek
a traded between solution quality and computation hardness, weqs®@ new
approach based on the PSAA method, where= 1, ..., N have the same value, i.e.,
vi=1l-nt=1.,N.

Definition 2 (Partial scenario approach Let 2—‘}&'1“ be an independent Monte
Carlo samples of the random varialgle Then we have a sampled program of CPP
as follows:

V(PSA :=min f(x) (11a)
st. P{gj(x&,é)>0,j=1,..m>1-n t=1.,N (11b)
(PSA xeX, (11c)

which is called "Partial Scenario approach” (PSA).

With PSA method, chance constraint (1b) is divided iNt@hance constraints.
It is easy to check that PSA problem is a conservative appraton of the PSAA
problem,i.e.V(PS A > V(PS AA.

4 Discussion on the two approaches

In this section, we discuss in more details on Assumptiondltha two approaches
as well as the formulations of a special case.
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4.1 Independence assumptions

The independence assumption which states&hatcomposed of two independent
parts&; andé&; is not restrictive in many cases. For instance, wkdaa normally
distributed with mean vectqr and covariance matriX, thené = u + AzwhereX =

AAT andz = (z,...,zy)" is a vector whose components are independent standard
normal variables. Thus by replaciggoy ¢ + Azin chance constraint (1b), the new
random vector within the constraints satisfies the assampti

4.2 Convexity results of PSAA

It is well known that the feasible set of Problem (1a) is galigmonconvex even
if the setX is convex and the functiog;(x, &) is concave inx. However, there are
still some convexity results on chance constrained problander given assump-
tions. For instance, under multivariate normal distribatian individual chance con-
straint of bilinear model is a second-order constraintchlis convex, when < 0.5.
Here we present one of the most general results of convekigndoy Shapiro et
al. [Shapiro et al., 2009]:

Theorem 2 Let gi(x,y), j = 1,...,m be quasi-concave functions ofifRwhere x is
an n-dimensional vector and y is a d-dimensional vecterdfRd is a random vector
that has ax-concave probability distribution whete € [—c0, 0], then the function

H(X) =P{gj(x,¢) >0, j=1,....m} (12)
is a-concave on the set
D={xeR':3¢eRisuchthat g(x,&) >0, j=1,...,m}.

Accordingly, under the assumptions of Theorem 2, a conpler the convexity
follows.

Corollary 1 Assume thatgx,y) : R"xRY, j = 1,...,m be quasi-concave functions
andé¢ e R is a random vector that has anconcave probability distribution. Then
the following set is convex and closed

{xe R":P{gj(x,£) >0, j=1,....m > p} (13)

where pe (0, 1].

According to Theorem 2, whef» has a logconcave probability distribution and
gj(x étl,gg) is quasi-concave functions ox,;), P{G(X, étl,_fz) > 0} is logconcave.
Howeverpn(X) is not logconcave, as logconcavity does not carry over fienms to
their sum [Prékopa, 2001, Prékopa, 2003], whereas cayahes carry over. There-
fore, to explore the convexity of PSAA problem, we seek thecewity ofP{G(X, étl &) >
0}.
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4.2.1 Preliminaries

Before presenting the convexity results, we introduce a aefimition as follows:

Definition 3 (Concave poin) z' is said to be a&oncave poinbf a random variable
&, if the cumulative distribution functiom(z) of £ is concave for alk > z*.

Evidently, if z is a concave point of, thenZ is also a concave point whenever
Z > Z. When¢ is univariate and has the standard normal distributiom thés a
concave point of and further it is the minimal concave point. For the otherariate
distributions, the minimal concave point is listed in Table

Table 1 Table of selected univariate distributions

Distribution Density function z
1 (@p)?
Normal Ty expt-52) u
Exponential Aexp(12) z=0 0
Uniform 5 a<z<b a
0 O<bx<1
Welbull ab?lexpa?) z=0 !
(%5 1<b
K lg s 0 O<k<1
Gamma “Frwo >0 (k-1 1<k
G ) 2 =3
Student Nie) (1+ 7) 0

Although Table 1 collects many minimal concave point for pnaopular diterent
distributions, it is hard to determirg for the multivariate variables. The following
relevant result was given by Prékopa [Prékopa, 200kdpé 2003]:

Theorem 3 @(z, ..., z,; R) is concave in the sdidz > vn-1,i = 1,...,n}, where
@D(z, ..., Zy, R) is the n-variate standard normal probability distributifumction with
correlation matrix R.

According to Theorem 3,{n-1,..., Vn—1) is a concave point ofi-variate
standard normally distributed variables with any corietaimatrix R. However it
is difficult to find the minimal (or Pareto) concave point even fomnalty distributed
vector.

We reconsider the chance constraint (9b) with the followargn:

P{Oj(x, &) > &, 20, j=1,....m>1-n (14)
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Theorem 4 Assume that gx, étl) j =1,...,m be concave functions of x and there
exists a concave point z= (z, ..., z,) of &, we have gx, étl) > z; for any xe X.
Then the following set is convex

Xo(@) = ((xy) e R PG (X &) 2 &5, J=1....m 2y.xeX].  (15)
Therefore the feasible set of problem PSAA is convex.
Proof. Let Go(X) := P{gj(x,étl) > &, J=1,....,m and®(2) be the cumulative

distribution function of¢; , which is non-decreasing function. Based on Definition
3, @(2) is concave whez > z'. Further asyj(x,£}) is concave function ok and

g;(x, étl) > 7 for anyx € X, thusGo(x) is concave orX. For any two pointsXi, yt,)
and (. y1,) in the setXy(¢}), anda € [0, 1], we have

Go(Ax1 + (1 - A)X2) = AGo(X1) + (1 - )Go(X2) = Ay, + (1 - Ay,
which concludes the proof. m]
Example

We consider a simple example to verify Theorem 4 as follows:

min c'x (16a)
st. PlEIx>&b>p (16b)
x>0 (16c)

wherec € R" is a deterministic cost vectaf; € R" andé,; € R are random and both
are assumed uniformly distributed. If the lower bound.ois 0 and the lower bound
of £ > 0, then its corresponding PSAA problem is a convex problenth@ minimal
concave point of; is 0.

4.3 Comparison between PSAA and SAA

Since PSAA and SAA problems have the same underlaying ideathe original
distribution of the random vector is replaced by its empiridistribution obtained
from N independent samples, They have the same basic propegig/ynconver-
gence properties. In the following, we present some resulisonvergence property
for PSAA, whereas there are similar results about conveproperty for the SAA
problemin the paper of Pagnoncelli et al. [Shapiro et alO®Bagnoncelli et al., 2009].
First of all, we denote by*, 3 ,,andf3g ,,the optimal values of the original prob-
lem, the SAA and the PSAA problem respectively, wiSleSs aanandSps anare the
set of the optimal solutions defined accordingly. We modigedll two definitions.

Definition 4 Functionfy is said to epiconverge tb, written asfy 5 f, if for a.e.
w € Q the functionsfy (-, w) epiconverge td (-).
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Definition 5 Functiong(x, &) is said to be &arathéodory functiopi.e., g(x, &) is
measurable for every € R" andg(x, £) is continuous for a.€ € =.

Proposition 1 Let G(x, £1,&2) 1= Mini<j<m 0j(X, &1, £2) be aCarathéodoryunction.

Then p(x) 5 po(X) w.p.1. Furthermore, suppose that there is an optimal sotux

of the original problem (i.e., problem (1a)), such that fatya > 0, there is xe X
with [|x — x*|| < e and p(X) > 1 — 7, the set X is compact and the objective function
f(x) is continuous. Thenif ,,— f* andD(Spsaa S) — Ow.p.1as N— oo, where
D(A, B) denotes the deviation of set A from set B.

Proof. Let po(X) = 1 — po(X), pn(X) = 1 — pn(X) and,S andSps aabe the comple-
ments of set§ andSps aarespectively. We first prove thak(X) is lower semicon-
tinuous. Since the indicator function on the open set is sentinous an@(x, étl,fz)
is a Carathéodoryfunction, thenI(G(x, étl,g-‘g) < 0) is random lower semicontin-
uous. Then following Fatou’s lemma (see Theorem 7.51 in j8baet al., 2009]),
Eg, [I(G(X, étl,_fz) < 0)] is lower semicontinuous. By Applying Fatou’s lemma agai
Pn(X) = 1-pn(X) = ZLEQ[H(GN(X’Q‘EZKO)] is lower semicontinuous. As 9 E,[I(G(x, &, &) <
0)] < 1 and N samples are independent and identically distribdtesh we have
pn(X) 5 po(X) w.p.1 based on the results of Theorem 7.51 in [Shapiro €2@0D9].
Therefore pn(X) 5 Po(X) w.p.1.

For the remaining proof, it follows the same procedure ofttusf of Proposition
5.30in [Shapiro et al., 2009] (or proof of Proposition 2.2Ragnoncelli et al., 2009]).

Thus we refer to the reader to [Shapiro et al., 2009] or [Pageli et al., 2009] for
more details. m]

4.4 Special case

In this subsection, we present a special case of problem ([{¢renits subsequent
PSAA approximation is tractable.

A bilinear chance constrained problem is considered wighfofiowing formula-
tion:

min  f(x) (17a)
st. PIM(X)é1 > é26m} > 1 -7 (17b)
X € X (17¢)

whereM(x) e R™% is a dfine matrix ofx, e, € R™ is all-ones vector; € R* and
& € Rare random variables.

Theorem 5 If &, is uniformly distributed on the interv@l, U], then the correspond-
ing PSAA problem of the bilinear problem has a conservativs#fe) approximation
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as follows:

min  f(X) (18a)
M(X)& - L

st. m > Viem, t=1,..,N (18b)

U-L
N

—Zt;ll L (180)
yvi<Lit=1,..,N (18d)
xe X (18e)

Moreover, if there is an optimal solution of the PSAA probtienoted by 5°**such
that for any sample?!,t = 1,...,N such that Mx"S*)&] > Ley, then XSA%is also
the optimal value of the conservative problem.

Proof. Let (x®2 y'®® pe a feasible solution of problem (18), i.e, the conseveati
approximation problem. With the PSAA method, the chancestramt (17b) is ap-
proximated by the following constraint:

TN PIM(X)E > &em) N

N 21-7 (19)

Letz = IP’{M(xfea)_étl > &em}. Sinceé, is uniformly distributed on the interval [ U],
then we have:

0 if min{M(x"®)ét} < L
7= | MOMOCOEIL if L < minM(xe)2) < U (20)
U-L = o1f =
1 if U <min{M(x"3¢&l)

Further, as X' y’®9) is a feasible solution of problem (18), we hay€® < 1,

N ,, fea feayst _ .
Z‘leyt >1-79 and'\/'(xu)f'ﬁiLeh1 > ytfe‘"‘em . Thus, we conclude tha > y;, which

leads to the conclusion th&%—‘ > 1 - n. Thereforex'®?is also a feasible solution
of the PSAA problem and problem (18) is a conservative agpration of PSAA
problem.

Let x"SAAbe an optimal solution of the PSAA problem which satisfiesdbe-
straint M(x"SAAE > Len. Letm = PIM(XPSAME > gen). Then we haver, <

i PSAA &ty N
min{1, m'"{M(ﬁ_LA)fl} L) and 2ol 51— . Thus @PS*Am, ..., ) is a feasible
solution of problem (18). Moreover, it is shown that problélB) is a conservative
approximation of the PSAA problem. Thereforg;$44 x4, ..., my) is the optimal so-

lution of problem (18). m|

Note that there is no assumption on the distributiof,0fMoreover, the corre-
sponding SAA problem of the bilinear problem is a mixed ietielinear problem.
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4.5 Convexity results of PSA

The variablesy; are fixed in PSA problem, i.ey; = 1 — 5. Therefore, PSA has more
general convexity results than PSAA as shown by the follgvaiorollary:

Corollary 2 Assume that gx, étl,fz) :R'xR%, j=1,...,mbe quasi-concave func-
tions andé, € R® is a random vector that has anconcave probability distribution.
Then the following set is convex

X1(&) = (xe R P{gj(x.&},£2) =0, j=1,....m > 1-p} (21)

Therefore the feasible set of PSA problem is convex.

4.6 Comparison between PSA and SA

In parallel with Theorem 1 for SA method, we also give a prigtiraation of sample
sizeN such that the optimal solution of the PSA problem is feadiblthe original
problem with high probability.

Theorem 6 For the PSA problem with a confidence paramefek r, we assume
that X is a convex and closed se{(x¥ is linear, i.e., {X) = c'x, Go(x, &) =
P {0j(x, €1.€2) = 0, = 1,..,m} is continuous and convex in x for adye =.

= N N
Further, assume that for all the scenario sampfes= {fi, . ..,g—‘l’\‘}, the PSA prob-

=
lem (11) is either unfeasible, or it has an unique optimatioh x (¢1) if feasible.
Giveng € (0,1] andzy = % if the sample size N satisfies the relation

N> N":= (E_(Iogi_+ ny7,
n n

=
then,P?{x*(fl) is either undefined or feasible for probldfia)} > 1 - g.

Proof. First, we reformulate the PSA problem with a confidence patany’ as
follows:

min c'x (22a)
st. 1-7 —Go(x&)<0,t=1,..,N (22b)
xe X (22¢)

Next, following the idea of the scenario approach, the aagiproblem of prob-
lem (22) is

min c'x (23a)
st. Po{l-7 —Go(x &) <0} > 117 (23b)
xe X (23c)
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=
We denote the optimal solution of problem (22) ¥y&1). According to Theo-
rem1,

N> N*:= rg_(log}_+ n)1,
n n

= =
thenP?{x*(gl) is either undefined or feasible for problem (23)1-B3. Whenx*(£1)
is feasible for problem (23), then one has

= —
P (1-1 ~ Go(X'(€1).£1) <0} > 1~ 77
=
By introducing auxiliary random variable= Go(x*(£1), £&1) = 0, we have

z Ey[6
P{:l{l—n’ —GO(X*(fl)yfl) < O} — P&{l—f], < (5} < 1(5_—[73/

where the last inequality is thdarkov inequality Thus, it follows thatedl > 1 - n.
1-n

Furthermore a&s[d] = E&[Go(x*(z),fl)] = P{gj(x*(z),él,gg) >0,j=1,..m},
then

Pgj(X' (1), é1.6) 20,j=1,..m>1-n(1-7)=1-7

where the last inequality is due tp = % Thus, we have the conclusion that

1—
=
P?{x*(fl) is either undefined or feasible for problenajl> 1 - 3. m|
¢1

5 Numerical experiments

In this section, a simple example andwpplydemand equilibrium problerare con-
sidered to evaluate numerically the performance of our @sed approaches, i.e.,
PSAA and PSA methods. All the considered problems are sahsiity CPLEX
12.6 [CPLEX, 2010] with its default parameters on twéelient configurations: an
Intel(R)D @ 200 GHz with 40 GB RAM for the simple example and an Intel(R)
Core(TM)i7-4600U @ 20 GHz 270 GHz with 160 GB RAM for thesupplydemand
equilibrium problem

5.1 Comparisons of the proposed methods via a simple example

Let us consider the following simple example:

min c'x (25a)
st. PlEfx>&)l>1-1 (25b)
x>0, (25¢)

wherec € R" is a deterministic cost vectaf; € R" andé; € R are random and both
are assumed uniformly distributed.
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Even with only one constraint, problem (25) is still NP-hasishown by Ne-
mirovski and Shapiro [Nemirovski and Shapiro, 2006] wieis independently uni-
formly distributed in a box anég; is deterministic.

The assumptions and the parameters are set as follows10,n = 0.1, cis
uniformly generated on the interval [1100]. £, and &, are indepently uniformly
distributed. the upper bound @f is uniformly generated on the inverval [12D0]
while the lower bound aof; is uniformly generated on the inverval [B)]. The upper
bound ofé; is uniformly generated on the inverval [B0000] while the lower bound
of & is uniformly generated on the inverval [R0].

We compared our two proposed methods with SAA approach anddénario
approach. For the bilinear constraint problem with an unifdistribution ofé,, the
corresponding SA approximation and PSA approximationmear problems while
its SAA approximation is a mixed inter linear problem.

However, PSAA approach problem is not linear as it containg probabilistic
constraints; but for problem (25) we have a conservativeainapproximation as
shown by Theorem 5.

The results are reported in Table 2 where column 1 gives th#oeuof scenarios.
Columns 23,4 and 5 present the objective value, the CPU time and the pilidipa
threshold of SA, PSA, SAA and PSAA respectively.

No. of Scenario SA PSA SAA PSAA

N=100 147.84 | 141.60 | 118.78 | 119.05
CPU(seconds)| 0.01 0.01 13.67 0.02
Probability 0.9965 | 0.9963 | 0.8883 | 0.8949

N=1000 155.47 | 151.22 | 119.42 | 119.97
CPU(seconds)| 0.02 0.02 70.05 0.09
Probability 0.9996 | 0.9971 | 0.8917 | 0.9012

N=10000 157.73 | 152.65| 120.11 | 120.15
CPU(seconds)| 0.05 0.05 10815 0.67
Probability 0.9998 | 0.9975| 0.9031 | 0.9019

Table 2 Computational results of the simple example.

We can see in Table 2 that SA and PSA have comparable perfoemanterms
of CPU time and the quality of the solutions. This is due to fingt that in both
approaches we solve linear programs. Furthermore, PSAi@olis better than SA
solution, since PSA approach cost is less than SA one. Howéneresults of SAA
and PSAA are dferent especially in terms of CPU time. In deed, PSAA outpernfo
SAA as we solve integer linear programs in SAA and continuomes in PSAA. Ad-
ditionally, PSAA is slightly more conservative than SAA. ffe best of our knowl-
edge, such performances have not been reached so far inesapgebximation the-
ory.
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5.2 Problem of suppfgemand equilibrium under uncertainty

In this section we consider a supply-demand equilibriunbf@m which is also dis-
cussed by Gorge [Gorge, 2013]. This problem is taken fromethetrical industry
and is a sub-problem of the Unit Commitment Problem (UCR)jrag at minimiz-
ing the global production cost while satisfying the supggmand balance and the
operational constraints of a mix of power generation utiygl(aulic valleys, nuclear
plants and classical thermal units - coal, fuel and gas-a fbiscrete time-period.

We propose the following concise formulation that emplessihe structure of
the problem:

min XL, Z;ril CitXit _ .

s.t. P{Y1; At > Dy = Z’j":l b jDj, t=1,.,T}>1-p
SeaXe<rnT,i=1..n
O<x:<li=1..,nt=1.,T

(26)

where

— Giy is the production cost for the planat time ste;

— rjis the maximum proportion that the prescribed plamill be used over the time-
horizon. These constraints represents the necessity tifrghdown the plants to
proceed to maintenance operations for instance;

— Xt is the command variable of the plant unét time steps ;

- %= (xy,...,x,y), t=1,...T;

— A = (Awt, ... Anyp) © @ random vector representing the availability of the piod
tion units at time stepy

— Dy : arandom variable representing the total demand at tinpet;ste

— (D1, ..., D) : a random vector on whicB; depend linearly whereds ; is the
subsequent cdgcient.

For the sake of simplicity, we assume tbﬁaandf),- are independently uniformly
distributed. The lower bound and upper bound\gfare uniformly generated on the
interval [2Q 60] and [6Q110] respectively, whilst the lower bound and upper bound
of D j are uniformly generated on the interval [BO] and [3050] respectively. The
other parameters are set as follows: 30, T = 10,m = 10, cis uniformly generated
on the interval [0100], whiler is also uniformly generated on the intervalgQlL].

b j is uniformly generated on the interval @]. Moreover, six confidence parameters
are considered, precisely~= 0.30,0.25,0.20,0.15,0.10, 0.05.

Numerical results are given by Table 3 where the columns thigesame infor-
mation results as Table 2 but for sixfiiirent values of;. We can observe that SA
approach has comparable CPU time and slightly better soldtian PSA approach
whengp is larger than B5. At the opposite, PSA approach has better solution when
n < 0.85. However, it is totally dterent case for PSAA and SAA approaches. PSAA
results are of dferent order of magnitude than SAA. Asincreases, SAA fails to
solve the sample problem especially whidnincreases. This is mainly true when
n = 0.3 whatever the size of the samples whilst PSAA solves thestigstance, i.e.,

N = 10000 within 10 seconds. Moreover, only instances With 500 are solved by
SAA. Whenn = 0.25 andN = 500, the CPU time required to solve this instance is
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greater than two hours. This is due to the high number of blesy; which are equal
to one. Therefore, there are more feasible solutions taoegpthen; increases.

p=0095 SA PSA SAA PSAA p=0.90 SA PSA SAA PSAA
N=500 1958.7 | 2087.3 | 1691.0 | 1823.8 N=500 | 1958.7 | 2050.3 | 1586.4 | 1731.2
CPU(S) 0.01 0.01 10.47 0.02 CPU(S) 0.01 0.01 67.23 0.02
Prob 0.951 | 0.987 | 0.915 | 0.936 Prob 0.951 | 0.983 | 0.855 | 0.903
N=1000 | 2155.4 | 2254.6 | 1704.6 | 1850.9 || N=1000 | 2155.4 | 2219.5| 1594.1 | 1751.2
CPU(S) 0.05 0.04 | 69156 | 0.79 CPU(S) 0.05 0.04 | 5013.6 | 0.47
Pro 0.984 | 0.992 | 0.918 | 0.945 Prob 0.984 | 0.991 | 0.860 | 0.909
N=10000 | 2404.5 | 2491.9 - 1874.6 || N=1000 | 2404.5| 2474.0 - 1766.7
CPU(S) 0.59 0.60 - 13.97 CPU(S) 0.59 0.51 - 10.31
Prob 0.998 | 0.999 - 0.957 Prob 0.998 | 0.999 - 0.921
p=0.85 SA PSA SAA PSAA p=0.80 SA PSA SAA PSAA
N=500 1958.7 | 2013.3 | 1520.2 | 1665.8 N=500 | 1958.7 | 1977.1| 1468.9 | 1619.5
CPU(S) 0.01 0.01 | 362.25| 0.02 CPU(S) 0.01 0.01 | 965.53 | 0.04
Prob 0.951 | 0979 | 0.791 | 0.874 Prob 0.951 | 0.974 | 0.757 | 0.846
N=1000 | 2155.4 | 2180.4 - 1681.4 || N=1000 | 2155.4 | 2142.4 - 1630.7
CPU(S) 0.05 0.03 - 0.53 CPU(S) 0.05 0.03 - 0.46
Prob 0.984 | 0.987 - 0.882 Prob 0.984 | 0.983 - 0.847
N=10000 | 2404.5 | 2465.6 - 1697.9 || N=1000 | 2404.5| 2401.2 - 1645.6
CPU(S) 0.59 0.50 - 10.35 CPU(S) 0.59 0.59 - 9.96
Prob 0.998 | 0.998 - 0.889 Prob 0.998 | 0.998 - 0.854
p=0.75 SA PSA SAA PSAA p=0.70 SA PSA SAA PSAA
N=500 1958.7 | 1942.1| 1424.4| 1579.5 N=500 | 1958.7 | 1908.2 - 1545.3
CPU(S) 0.01 0.01 | 8079.3| 0.82 CPU(S) 0.01 0.01 - 0.04
Pro 0.951 | 0969 | 0.711 | 0.820 Prob 0.951 | 0.962 - 0.791
N=1000 | 2155.4 | 2106.9 - 1589.3 || N=1000 | 2155.4 | 2072.3 - 1553.7
CPU(S) 0.05 0.03 - 0.43 CPU(S) 0.05 0.03 - 0.41
Prob 0.984 | 0.977 - 0.818 Prob 0.984 | 0.971 - 0.778
N=10000 | 2404.5 | 2369.3 - 1602.7 || N=1000 | 2404.5| 2323.1 - 1565.9
CPU(S) 0.59 0.51 - 9.76 CPU(S) 0.59 0.47 - 9.77
Prob 0.998 | 0.998 - 0.829 Prob 0.998 | 0.998 - 0.798
Table 3 Computational results of supptlemand problem. “~” indicates that no optimal solutionshimit
two hours

6 Conclusions

In this paper, we present a new sample approximation metirathfince constrained
problems called Partial SAA (PSAA). We show that our apphoaejoys partially

the same properties as the standard sample approach. Moreeshow that PSAA
problem is convex in some cases while the standard sampiage/approximation
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(SAA) is a mixed integer problem. Meanwhile, a new definitadfrtconcave points is
introduced for the first time to the best of our knowledge, plags an important role

in the convexity of the probability distribution. Some réswon the concave points
are presented as well. Our numerical results show the higbmpeances of PSAA

for solving large size instances with up to 10000 samplespaoed to standard SA
and SAA approaches. Itis easy to see that PSAA can be usealforga wide range

of stochastic problems using a sample approximation witiglaljyrcompetitive CPU
time and slightly more conservative bounds. In additiotyrferwork related to PSAA
approach could lies in fferent directions, e.g., consider more general models with
more general distributions, and relax some consideredgssns. . .
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