
c� 2008 Springer-Verlag. This is the author’s version of the work. It is posted at http://www.brucker.ch/
bibliography/abstract/brucker.ea-extensible-2008-b by permission of Springer-Verlag for your per-
sonal use. Not for redistribution. The definitive version was published in Journal of Automated Reasoning (2008) 41:219–

249, doi: 10.1007/s10817-008-9108-3.

J Autom Reasoning (2008) 41:219–249
DOI 10.1007/s10817-008-9108-3

An Extensible Encoding of Object-oriented
Data Models in HOL
with an Application to IMP++

Achim D. Brucker · Burkhart Wolff

Received: 14 November 2008 / Accepted: 14 November 2008 / Published online: 14 December 2008

Abstract We present an extensible encoding of object-oriented data models into
higher-order logic (HOL). Our encoding is supported by a datatype package that lever-
ages the use of the shallow embedding technique to object-oriented specification and
programming languages. The package incrementally compiles an object-oriented data
model, i. e., a class model, to a theory containing object-universes, constructors, ac-
cessor functions, coercions (casts) between static types (and providing a foundation
for the notion of dynamic types), characteristic sets, and co-inductive class invariants.
The package is conservative, i. e., all properties are derived entirely from constant
definitions, including the constraints over object structures. As an application, we use
the package for an object-oriented core-language called IMP++, for which we formally
prove the correctness of a Hoare logic with respect to a denotational semantics.

Keywords object-oriented data models · HOL · theorem proving · verification

1 Introduction

While object-oriented programming is a widely accepted programming paradigm,
theorem proving over object-oriented programs or object-oriented specifications is

A.D. Brucker ()
SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
e-mail: achim.brucker@sap.com
URL: http://www.brucker.ch/

B. Wolff
Université Paris-Sud, Parc Club, 4, Rue Jaques Monod, 91893 Orsay Cedex, France
e-mail: wolff@lri.fr
URL: http://www.lri.fr/~wolff

http://www.brucker.ch/bibliography/abstract/brucker.ea-extensible-2008-b
http://www.brucker.ch/bibliography/abstract/brucker.ea-extensible-2008-b
http://dx.doi.org/10.1007/s10817-008-9108-3
http://dx.doi.org/10.1007/s10817-008-9108-3
http://www.brucker.ch/
http://www.lri.fr/~wolff
http://www.brucker.ch/
http://www.lri.fr/~wolff

220 Achim D. Brucker · Burkhart Wolff

far from being a mature technology. Classes, inheritance, subtyping, objects and ref-
erences are deeply intertwined and complex concepts that are quite remote from the
platonic world of first-order logic (FOL) or higher-order logic (HOL). For this reason,
there is a tangible conceptual gap between the verification of functional programs and
object-oriented programs.

Among the existing implementations of proof environments dealing with subtyp-
ing and references, two categories can be distinguished:

1. verification condition generators reducing a Hoare-style proof into a proof in a
standard logic, and

2. deep embeddings into a meta-logic.

Verification condition generators, for example, are Boogie for Spec# [5,21], Kraka-
toa [22] and several similar tools based on the Java Modeling Language (JML) [20].
The underlying idea is to compile object-oriented programs into standard imperative
ones and to apply a verification condition generator on the latter. While technically
sometimes very advanced, the foundation of these tools is quite problematic: besides
the correctness problem of the compilation, there is the problem that the operations
of the target machine (i. e., the memory model) must be axiomatized; for Spec#, this
easily results in several hundreds of axioms. Even if one believes that these axioma-
tizations adequately describe the target machine, the question of consistency of these
axiomatizations is highly non-trivial [9].

Among the tools and formalizations based on deep embeddings, there is a sizable
body of literature on formal models of Java-like languages (e. g., [15,16,28,31]). In
a deep embedding of a language semantics, syntax and types are represented by free
datatypes. As a consequence, derived calculi inherit a heavy syntactic bias in the form
of side-conditions over binding and typing issues. This is unavoidable if one is inter-
ested in meta-theoretic properties such as type-safety; however, when reasoning over
applications and not over language tweaks, this advantage turns into a major obstacle
for efficient deduction. Thus, while various proofs for type-safety, soundness of Hoare
calculi and even soundness of verification condition generators are formally proven,
none of the mentioned deep embeddings has been used for substantial proof work in
applications.

In contrast, the shallow embedding technique has been used for semantic repre-
sentations such as HOL itself (in Isabelle/Pure), for HOLCF (in Isabelle/HOL) used for
reasoning over Haskell-like programs [25] or for HOL-Z [11,6].

The essence of an effective shallow embedding is to find an injective mapping of
the pair of an object-language expression E and its type T to a pair E :: T of the meta-
language HOL. “Injective mapping” means, that well-typedness is preserved in both
ways. Thus, type-related side-conditions in derived object-language calculi can be left
implicit. Since such implicit side-conditions are “implemented” by a built-in mecha-
nism of the meta-logic, they can be checked orders of magnitude faster compared to
an explicit treatment involving tactic proof.

At first sight, it seems impossible to apply the injective shallow embedding tech-
nique to object-oriented languages: Their characteristic features like subtyping and
inheritance are not present in the typed l -calculi underlying HOL systems. However,

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 221

an injective mapping in our sense does not mean a simple one-to-one conversion;
rather, the translation might use a pre-processor, making, for example, implicit casts
between subtypes and supertypes explicit. Still, we need a formal data model that
gives first-class support such semantic properties, like type casting without losing in-
formation.

Beyond the semantical requirements, there is an important technical one: object-
oriented data models must be extensible, i. e., it must be possible to add a class to an
existing class model (or class system) without reproving everything. The problem be-
comes apparent when considering the underlying state of an object-oriented program.
This state consists of objects, i. e., abstract representations of pieces of memory, that
may be linked via references (object identifiers, oid) to each other. Objects are tu-
ples of class attributes, i. e., elementary values like Integers or Strings or references to
other objects. The type of these tuples is interpreted as the type of the class they are
belonging to. States are maps of type oid)U relating references to objects living in
a universe U of all objects.

Instead of constructing such a universe globally for all data models (which is
either single-typed and therefore not an injective type representation, or “too large”
for the type system of HOL), one could think of generating an object universe only
for each given class model. Ignoring subtyping and inheritance for a moment, this
would result in a universe U 0 = A + B for some class model with the classes A and
B. Unfortunately, such a construction is not extensible: If we add a new class to an
existing class model, say D, then the construction U 1 = A + B + D results in a type
different from U 0, making their object structures logically incomparable. Properties,
that have been proven over U 0 will not hold over U 1. Thus, such a naive approach
rules out an incremental construction of class models, which makes it unfeasible in
practice. This holds in particular for an interactive theorem proving approach.

As contributions of this paper, we present a novel universe construction which
represents subtyping within parametric polymorphism in an injective, type-safe man-
ner and which is extensible. This construction is implemented in a datatype package
for Isabelle/HOL, i. e., a compiler that generates for each class model and its exten-
sions conservative definitions. This includes the definition of constructors and acces-
sors, casts between types, type tests, and characteristic sets of objects. We apply this
specification infrastructure by integrating it into the assertions of a Hoare calculus for
a small object-oriented language called IMP++.

The plan of the paper is outlined as follows: In Section 2 we introduce our meta-
language higher-order logic (HOL) and a syntactic interface for accessors, casts, tests,
etc, in the form of the assertion language COOL. In the following sections, we present
our type-safe encoding of COOL by several consecutive levels: In Section 3, we present
level 0 which provides a typed representation of objects (i. e., pieces of memory) in a
store. In Section 4, we present level 1 of our COOL encoding which provides a type-
safe implementation of its accessors, casts, tests, In Section 5 we give a more re-
fined definition of COOL, called level 2 encoding, which supports class invariants. We
show in Section 6 in which ways our constructions support modular proof methodolo-
gies. Section 7 contains the application part of the paper: we provide a denotational
semantics for IMP++ and derive a calculus for Hoare-style program verification. Fi-
nally, in Section 8 we draw conclusions and discuss related work.

222 Achim D. Brucker · Burkhart Wolff

2 Preliminaries

2.1 Isabelle/HOL

Isabelle [29] is a generic, LCF-style theorem prover implemented in the functional
programming language SML. For our object-oriented datatype package, we use the
possibility of using Isabelle for building SML programs performing symbolic com-
putations over formulae in a logically safe way. Isabelle/HOL supports conservativity
checks of definitions, datatypes, primitive and well-founded recursion, and powerful
generic proof engines based on rewriting and tableau provers.

Higher-order logic (HOL) [4] is a classical logic with equality enriched by total
polymorphic higher-order functions. The type constructor for the function space is
written infix: a) b ; multiple applications like t1) (· · ·) (t

n

) t
n+1) · · ·) are also

written as [t1, . . . ,tn

]) t
n+1. HOL is centered around the extensional logical equality

_ = _ with type [a,a]) bool, where bool is the fundamental logical type.
The type discipline rules out paradoxes such as Russel’s paradox in untyped set

theory. Sets of type a set can be defined isomorphic to functions of type a) bool; the
element-of-relation _ 2 _ has the type [a,a set]) bool and corresponds basically to
the application; in contrast, the set comprehension {_|_} has type [a set,a) bool])
a set and corresponds to the l -abstraction.

The HOL type constructor t? assigns to each type t a type lifted by ?; for lifted
types a test for definedness is available via defx ⌘ (x 6= ?). The function

x

_
y

: a)
a? denotes the injection, the function p_q : a?) a its inverse for defined values.
Based on these definitions, partial functions, i. e., a * b , can be represented as total
functions of type a) b?. We define dom f , called the domain of a partial function
f , by the set of all arguments of f that do not yield ?.

2.2 COOL—A Core Object-oriented Assertion Language

In this section, we introduce a core object-oriented assertion language (COOL). We
start by presenting the concrete syntax for COOL at a glance and thus make the domain
of our logical representation more precise. The basic lexical entities of COOL are:

– C, a set of class names,
– A, a set of attributes,
– V , a set of variable symbols, and
– X , a set of program variable symbols.

A class is a component consisting of an abstract name and a set of attributes. Thus,
technically, the type of a class is based on its abstract name and the types of its at-
tributes. On the level of COOL, we identify the type of a class by its name. Moreover,
COOL supports the usual basic datatypes, e. g., Integer, and provides a range of col-
lection types. In more detail, the types of COOL are inductively defined as follows:

T := C | Boolean | Integer | Real | String | T Sequence

| T Set | T Bag | T ->T .
(1)

In Section 3 and Section 4 we describe how these types can be mapped injectively to
HOL types.

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 223

As abstract syntax, a class model, also called class system, is a (finite) partial map
that assigns to a class identifier a (finite) map, that associates to each attribute name
its type:

M := C * (A * T) . (2)

For simplicity, we assume that attribute names are unique throughout this paper; this
means that the domains of two elements in the range of M are always pairwise disjoint.
Our formalization in Isabelle/HOL, and thus our datatype package, require only that
attribute names are unique within a class.

We assume an irreflexive partial order _ < _ on class types called class hierarchy

and for c

i

< c

j

, we will say that the class c

i

is a subclass of class c

j

. The following
inductive set of expressions is called path expressions:

P := V | P[C] | P.A . (3)

Path expressions are build from program variables, castings to a class type, and ac-
cessor functions to an attribute of an object. The expressions of COOL are:

E := P | ∂ P | P.isType(T)| P.isKind(T)|
V | E = E | ¬E | E ! E | · · · |
8V.E | 9V.E |
E +E | E ⇤E | · · · | E [E | · · · | {V.E} | · · ·

(4)

While the latter lines sketch a conventional expression language, the first line contains
key elements of object-orientation: the result of a path expression may denote (sets
of, sequences of) objects, paths can be tested if they are defined (∂ P) within a store,
the dynamic type (P.isType(T)) and the kind (P.isKind(T)) of an object may
be tested. Recall that casts can change the static type of an object, while the dynamic
type is just the type of an object at creation time; the kind of an object is defined as
the dynamic type and all its subtypes. These concepts can be found in many object-
oriented languages, e. g., Java, C#, and UML/OCL.

We refrain from a presentation of the (obvious) type inference rules for COOL. An
assertion over a state s in COOL is denoted as s |= E. Semantically, an assertion is a
set of states s that satisfy E (which must be of type Boolean).

We present our framework for encoding object-oriented data structures and as-
sertion languages together with a small example (see Figure 1): we assume a class
Node with an attribute i of type Integer and the attributes left and right,
both of type Node. Further, we assume a subclass CNode of Node with an at-
tribute color of type Boolean. Thus, we have CNode < Node in the subtype
ordering, and {CNode 7! {color 7! Boolean},Node 7! {left 7! Node, . . .}}.
Note, however, that the COOL assertions are based on a two-valued semantics (sim-
ilar to Spec# or JML), whereas OCL [1] (a constraint language for UML [2]) is based
on a three-valued logic, i. e., the type Boolean ranges over true, false, and
OclUndefined.

While our datatype package was developed within the HOL-OCL project [13,12],
it can be used for an arbitrary assertion language with the techniques presented here.
When a specification is loaded, all definitions presented in Section 3, Section 4, and
Section 5, are automatically generated and all theorems automatically proven by our
datatype package. Besides the concrete syntax presented throughout this paper, our

224 Achim D. Brucker · Burkhart Wolff

class Node
attributes

i : Integer
left : Node
right : Node

constraints

inv positive: self.i> 5
end

class CNode < Node
attributes

color : Boolean
constraints

inv flip:
∂ self.left[CNode] �! self.color= ¬self.left[CNode].color

^ ∂ self.right[CNode]�! self.color= ¬self.right[CNode].color
inv flip_strong:

∂ self.left[CNode] ^ self.color= ¬self.left[CNode].color
^ ∂ self.right[CNode]^ self.color= ¬self.right[CNode].color

end

Figure 1 A simple class model describing directed graphs: we model a class Node with an at-
tribute i of type Integer and two attributes left and right for storing adjacent objects of
type Node. Moreover, we model a subclass CNode of Node that introduces an attribute color of
type Boolean. Both classes are described more precisely by invariants, e. g., for any instance of
class Node we require that the value of i is larger than five. For the class CNode, we require two
invariants, a weaker and a stronger one. Both require that the color attribute flips its value while
traversing a path through the object graph, the second one also requires additionally that left and right
nodes exist.

datatype package is also able to load UML class models (together with an OCL speci-
fication) in a standardized exchange format (XMI) used by most CASE tools.

3 Level 0: Typed Object Universes

A key objective of our approach is to type objects unambiguously. Although the ob-
jects may contain untyped object identifiers (oid’s), the operations of COOL will be
defined such that they always work on objects, not on object identifiers.

As mentioned earlier, a consequence of typed objects is the necessity of object
universes to define the store model in HOL. In this section, we introduce our families
U i of object universes enabling extensibility. Here, we use the superscript to denote
the temporal development, i. e., U i+1 is originated by extending U i. Each U i com-
prises all value types and an extensible class type representation induced by the class
hierarchy. To each class, a class type is associated which represents the set of ob-

ject instances or objects. In other words, a type is constructed for all objects (“pieces
of memory”) belonging to a class. The extensibility of a universe type is reflected
by “holes” (polymorphic variables), that can be filled when “adding” extensions to a
class system. Our construction ensures that U i+1 is just a type instance of U i (where
U i+1 is constructed by adding new classes to U i). Thus, properties proven over ob-
ject systems “living” in U i remain valid in U i+1, see Figure 2 for an illustration of
the main ideas of the construction we present in the following.

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 225

A A b Object

aA

U 1
(aA,bObject) = A⇥aA

?+b Object

U 2
(aB,aC ,b A,bObject) = A⇥ (

=aA
z }| {
B⇥aB

?+C⇥aC
?+b A)?

(a) A single class A represented by the type sum A⇥aA

? + bObject. The type variable aA

? allows for
introducing subclasses of A and the type variable bObject allows for introducing new top-level classes.

A

B C

A b Object

B

aB

C b A

aC

U 2
(aB,aC ,b A,bObject) = A⇥ (

=aA
z }| {
B⇥aB

?+C⇥aC
?+b A)?

+b Object

(b) Extending the previous class model simultaneously with two direct subclasses of A is represented
by instantiating the type variable aA of U 1

(aA,bObject).

Figure 2 Assume we have a model consisting only of one class A which “lives” in the universe
U 1

(aA,bObject) that we want to extend simultaneously with two new subclasses, namely B and C. As

both new classes are derived from class A, we construct a local type polynomial B⇥aB

?+C⇥aC

?+b A.
This type polynomial is used for instantiating type variable aA. This process results in the universe
U 2

(aB,aC ,b A,bObject) for the final class hierarchy. In particular, the universe U 2
(aB,aC ,b A,bObject) is

a type instance of U 1
(aA,bObject). Thus, properties that have been proven over the initial universe

U 1
(aA,bObject) are still valid over the extended universe U 2

(aB,aC ,b A,bObject).

3.1 A Typed Object Store

In the following we define several type sets which all are subsets of the types of
the HOL type system. These sets, although denoted in usual set-notation, are a meta-
theoretic construct, i. e., they cannot be formalized in HOL.

First, we introduce types for attributes. Since we aim towards a conservative for-
malization of our object store, we cannot model the set T of COOL types directly we
have to support for mutually recursive data structures. Thus, we introduce a special
type oid for object-identifiers, i. e., we assume that each object (instance of a class)
can be uniquely identified by its identifier (which is of type oid) and we formally de-
fine the set A of attribute types and the set C of class types. Conceptually, the union of
these two type sets provides a first representation of the set T of COOL types. Formally,
we define for the class attributes the set of attribute types as follows:

Definition 1 (Attribute Types) The set of attribute types A is defined inductively as
follows:

1. {Boolean,Integer,Real,String,oid}⇢ A, and
2. {aSet,aSequence,aBag}⇢ A for all a 2 A.

226 Achim D. Brucker · Burkhart Wolff

Attributes with non-value types, e. g., the attribute left of class Node, are encoded
using the type oid. Of course, this representation cannot guarantee the type-safety for
attributes with non-value types. Therefore, these object identifiers (i. e., references)
will be resolved by accessor functions, on level 1 (see Section 4 for details) of our
encoding, like A. left(1) (the superscript denotes that this is an attribute accessor on
level 1) for a given state; an access failure will be reported by ?.

The main idea of the following encoding of class types is as follows: we represent
a class by a tuple, which is built by pairing the attribute types of the class. Moreover,
we extend this type by an abstract datatype for each class. This abstract datatype, the
tag type, ensures that there is a bijection between the class types and their representa-
tion as tuple.

Definition 2 (Tag Types) For each class C a tag type Ct 2 T is associated. The set T
is called the set of tag types.

Tag types are one of the reasons why we can build a strongly typed universe (with
respect to the object-oriented type system), e. g., for class Node we introduce an
abstract datatype Nodet with the only element Nodekey. Further, for each class we
introduce a base class type:

Definition 3 (Base Class Types) The set of base class types B is defined as follows:

1. classes without attributes are represented by (t⇥unit) 2B, where t 2 T and unit
is the standard HOL type denoting the empty product.

2. if t 2 T is a tag type and a

i

2 A for i 2 {0, . . . ,n} then (t⇥a0⇥ · · ·⇥a

n

) 2B.

Thus, the base type of an object of class Node is Nodet⇥Integer⇥oid⇥oid and
of class CNode is CNodet⇥Boolean. Conceptually, the base class type represents
the mapping of COOL class names C (represented by the tag type) to the attributes A

(directly represented by their types).
Without loss of generality, we assume in our object model a common supertype

of all objects. For example, for Java this is Object, while for OCL, this is OclAny.

Definition 4 (Object) Let Objectt 2 T be the tag of the common supertype Object
and oid the type of the object identifiers. We define a Object :=

�

(Objectt⇥oid)⇥
a?

�

.

Object generator functions can be defined such that freshly generated object-identifiers
to an object are also stored in the object itself; thus, the construction of reference types
and of referential equality is fairly easy (see the discussion on state invariants in Sec-
tion 6.4). Now we have all the foundations for defining the type of our family of
universes formally:

Definition 5 (Universe Types) The set of all universe types U is inductively defined
by:

1. U 0
a 2 U is the initial universe type with one type variable (hole) a .

2. if U(a0,...,a
n

,b1,...,b
m

) 2 U, n,m 2 N, i 2 {0, . . . ,n} and c 2B then

U(a0,...,a
n

,b1,...,b
m

)

h

a
i

:=
�

(c⇥ (a
n+1)?)+b

m+1
�

i

2 U

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 227

This definition covers the introduction of “direct object extensions” by instantiat-
ing a-variables.

3. if U(a0,...,a
n

,b1,...,b
m

) 2 U, n,m 2 N, i 2 {0, . . . ,m}, and c 2B then

U(a0,...,a
n

,b1,...,b
m

)

h

b
i

:=
�

(c⇥ (a
n+1)?)+b

m+1
�

i

2 U

This definition covers the introduction of “alternative object extensions” by in-
stantiating b -variables.

The initial universe U 0
a represents mainly the common supertype (i. e., Object,

OclAny) of all classes, i. e., a simple definition would be U 0
a = a Object. How-

ever, we will need the ability to store Values = Real+ Integer+ Boolean+
String. Therefore, we define the initial universe type by U 0

a = a Object+Values.
Extending the initial universe U 0

a with the classes Node and CNode leads to the fol-
lowing universe type:

U 1
(aC,bC,bN) =

⇣

(Nodet⇥Integer⇥oid⇥oid)

⇥
�

(CNodet⇥Boolean)⇥ (aC)?+bC
�

?+bN

⌘

Object+Values .

(5)

We use the idea of a universe representation without values for a class with all its
extensions (subtypes). We construct for each class a type that describes a class and
all its subtypes. They can be seen as “paths” in the tree-like structure of universe
types, collecting all attributes in Cartesian products and pruning the type sums and
b -alternatives.

Definition 6 (Class Type) The set of class types C is defined as follows: Let U be
the universe covering, among others, class C

n

, and let C0, . . . ,Cn�1 be the supertypes
of C

n

, i.e, C

i

is inherited from C

i�1. The class type of C is defined as:

1. C

i

2B, i 2 {0, . . . ,n} then

C 0
a =

✓

C0⇥
⇣

C1⇥
�

C2⇥ · · ·⇥ (C
n

⇥a?)?
�

?
⌘

?

◆

?
2 C,

2. UC � C, where UC is the set of universe types with C 0
a := U 0

a .

Thus in our example we represent the class type of class Node by the HOL type

(a
C

,b
C

) Node=
⇣

(Nodet⇥Integer⇥oid⇥oid)

⇥
�

(CNodet⇥Boolean)⇥ (a
C

)?+b
C

�

?
⌘

Object .
(6)

Here, aC allows for extension with new classes by inheriting from CNode while bC
allows for direct inheritance from Node.

The outermost _? reflect the fact that class objects may also be undefined, in
particular after projecting them from some term in the universe or failing type casts.
Thus, also the arguments of constructors may be undefined.

228 Achim D. Brucker · Burkhart Wolff

3.2 Elementary Object Construction

For each class, we provide injections and projections into an object universe. In the
case of the class Object these definitions are quite easy, e. g., using the construc-
tors Inl and Inr for type sums we can easily insert an Object object into the initial
universe via:

mk(0)
Object obj = Inl obj with type a Object)U 0

a (7)

where obj is a variable denoting the current object. Recall that we denote the level on
which a constant (e. g., injection, projection, attribute accessor) is defined by a super-
script (in parenthesis) and the class for which the constant is defined by a subscript.

The inverse function for projecting an Object object out of a universe can be
defined as follows:

get(0)
Object u =

(

k if u = Inlk

e k. true if u = Inrk

with type U 0
a) a Object. (8)

where e x.P x is the Hilbert-operator that chooses an arbitrary x satisfying P.
In the general case, the definitions of the injections and projections are a little bit

more complex, but follow the same schema: for the injections we have to find the
“right” position in the type sum and insert the given object into that position. Further,
we define in a similar way projectors for all class attributes. For example, we define
the projector for accessing the left attribute of the class Node:

obj. left(0) ⌘ (fst�snd�snd� fst)pbase obj

q (9)

with type (a1,b)Node) oid? and where base is a variant of snd over lifted tuples:

basex⌘
(

b if x =
x

(a,b)
y

,
? otherwise.

(10)

For attributes with non-value types we return an oid. As we return oid for all class
types, the underlying representation map is not injective and therefore not type-safe.
In contrast, in Section 4, we show how these projectors can be used to define a type-
safe variant of projectors.

Similarly, we can define injections, or setters, for each attribute. For example, for
setting the attribute left to a specific value lft we define:

obj.set(0)
left lft ⌘ let

oid = OidOf obj

i = obj. i(0)

right = obj. right(0)

ext = obj.ext(0)

in
x

((Objectt,oid),
x

((Nodet, i, lft,right),ext)
y

)
y

(11)

where OidOf _ accesses the object identifier, _. i(0) and _. right(0) are attribute acces-
sors, and _.ext(0) is an accessor for possible extension of the object, i. e., parts defined
in subclasses, e. g., CNode.

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 229

In a next step, we define type test functions; for universe types we need to test
if an element of the universe belongs to a specific type, i. e., we need to test which
corresponding extensions are defined. For Object we define:

isUniv(0)
Object u =

(

true if u = Inlk

false if u = Inrk

with type U 0
a) bool. (12)

For class types we define two type tests, an exact one that tests if an object is exactly of
the given dynamic type and a more liberal one that tests if an object is of the given type
or a subtype thereof. Testing the latter one, which is called kind in the OCL standard,
is quite easy. We only have to test that the base type of the object is defined (using
def_), e. g., not equal to ?:

isKind(0)
Object obj = def obj with type a Object) bool. (13)

An object is exactly of a specific dynamic type, if it is of the given kind and the
extension is undefined, e. g.:

isType(0)
Object obj = isKind(0)

Object obj^¬
�

(def�base)obj

�

with type a Object) bool.
(14)

The type tests for user defined classes are defined in a similar way by testing the
corresponding extensions for definedness.

Finally, we define casts, i. e., ways to convert classes along their subtype hierar-
chy. Thus we define for each class a cast to its direct subtype and to its direct super-
type. We need no conversion on the universe types where the subtype relations are
handled by polymorphism. Therefore we can define the type casts as simple compo-
sitions of projections and injections, e. g.:

Node(0)
[Object] = get(0)

Object �mk(0)
Node with type (a1,b1)Node) (a1,b1) Object,

(15)

Object(0)
[Node] = get(0)

Node �mk(0)
Object with type (a1,b1) Object) (a1,b1)Node.

(16)

These type-casts are changing the static type of an object, while the dynamic type

remains unchanged. Figure 3 summarizes this construction for the three classes A, B,
and C.

Note, for a universe construction without values, e. g., U 0
a = a Object, the

universe type and the class type for the common supertype are the same. In that case
there is a particularly strong relation between class types and universe types on the
one hand and on the other there is a strong relation between the conversion functions
and the injections and projections function. In more detail, one can understand the
projections as a cast from the universe type to the given class type and the injections
as the inverse cast operation.

Now, if we build a theorem over class invariants (based finally on these projec-
tions, injections, casts, characteristic sets, etc.), it will remain valid even if we extend
the universe via a and b instantiations. Therefore, we have solved the problem of
structured extensibility for object-oriented languages.

This construction establishes a subtype relation via inheritance. Therefore, a set of
Nodes (with type

�

(a1,b) Node
�

Set) can also contain objects of type CNode. For
resolving operation overriding, i. e., late-binding, the packages generates operation
tables for user-defined operations; see [12,10] for details.

230 Achim D. Brucker · Burkhart Wolff

Figure 3 The type casts, e. g.,
B[C] allow the conversion of
a type to its direct successor
or predecessor in the type hi-
erarchy. The injections, e. g.,
mkB convert a class type to the
universe type and the projec-
tions, e. g., getB, convert a uni-
verse type to a concrete class
type. For a universe without
values, the class type and the
universe type of the top most
class are identical. Here, the
package Universe represents
the universe, i. e., the top level
class (Object) and the primi-
tive types (Values).

Universe

Object ValuesObject Values

A

B

C

A(0)
[Object]

B(0)
[A]

C(0)
[B]

Object(0)
[A]

A(0)
[B]

B(0)
[C]

mk(0)
A

mk(0)
B

mk(0)
C

get(0)
A

get(0)
B

get(0)
C

3.3 Properties of Elementary Objects

Based on the presented definitions, our object-oriented datatype package proves that
our encoding of object structures is a faithful representation of object-orientation
(e. g., in the sense of languages like Java or Smalltalk or the UML standard [2]). These
theorems are proven for each model, e. g., during loading of a specific class model.
This is similar to other datatype packages in interactive theorem provers. Further,
these theorems are also a prerequisite for successful reasoning over object structures.

In the following, we assume an arbitrary model with the classes A, B and C where
B is a subclass of A and C is a subclass of B (recall Figure 3). We start by proving this
subtype relation for both our class type and universe type representation:

isUniv(0)
A univ

isUniv(0)
B univ

(17a)

isType(0)
B obj

isKind(0)
A obj

(17b)

We also show that we can switch between the universe representations and object
representation without losing information, in fact, both type systems are isomorphic:

isUniv(0)
A univ

mk(0)
A (get(0)

A univ) = univ

(18a)

isType(0)
A obj

get(0)
A (mk(0)

A obj) = obj

(18b)

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 231

isType(0)
B obj

isUniv(0)
A (mk(0)

A obj)
(19a)

isUniv(0)
A univ

isType(0)
A (get(0)

A univ)
(19b)

Moreover, we can “re-cast” an object safely, i. e., up and down casts are idempotent.
However, casting an object deeper in the subclass hierarchy than its dynamic type
results in undefinedness:

isType(0)
A obj

obj

(0)
[B] =?

(20a)

isType(0)
B obj

�

(obj

(0)
[A])

(0)
[B]

�

= obj

(20b)

and also, the cast operations are strict and transitive, e. g.:

?(0)
[A] =? (21a)

isType(0)
C obj

(obj

(0)
[B])

(0)
[A] = obj

(0)
[A]

(21b)

Further, for all class types c, both isType(0)
c ? = false and isKind(0)

c ? = false
are valid.

Summarizing, these derived rules show that our encoding of inheritance estab-
lishes a subtype relation. Moreover, the (informal) relations between classes one
would expect from languages like UML, Java, or Spec#, also hold in our encoding.

Our datatype package also derives similar properties for the injections and projec-
tions into attributes automatically. For example, assume the class A has two attributes
a and b then we derive among others:

obj 6=?
(obj.set(0)

a x).a(0) = x

(22a)

(obj.set(0)
a x).b(0) = obj.b(0) (22b)

(obj.set(0)
a x).set(0)

a y = obj.set(0)
a y

(23)

(obj.set(0)
a x).set(0)

b y = (obj.set(0)
b y).set(0)

a x

(24)

As we use a shallow embedding of object-oriented data structures into HOL, these
properties cannot be proven as meta-theoretic properties of our encoding. Instead, our

232 Achim D. Brucker · Burkhart Wolff

datatype package proves these properties, fully automatically, during the import of an
object-oriented data model.

4 Level 1: A First Type-safe Embedding of COOL

In this section, we present a type-safe embedding of the accessors of COOL. As a pre-
requisite, we define the store as a partial map based on the concept of object universes:

a St := oid * Ua . (25)

Since all operations over our object store will be parametrized by a St, we introduced
the following type synonym:

Va(t) := a St) t . (26)

Thus we can define type-safe accessor functions: object identifiers (references) are
completely encapsulated, i. e., on level 1 no object identifiers are visible. For example,
the function for accessing the left attribute of an object of class Node in a system state
s works by taking the object, projecting the oid for the left attribute, de-reference
it in the state s (which gives a value in the current universe), and project from this the
class object of type Node. Formally, this is expressed as follows:

obj. left(1) ⌘ l s .

(

get(0)
Node u if s(obj. left(0)) =

x

u

y

,
? otherwise.

(27)

For set- or sequence valued accessors, we have to provide definitions that de-reference
each element of, e. g., a set of object identifiers and build a set of typed objects.

The type of the object-language accessor .left returning an object of type
Node, which is in fact a function of type Node! Node, is now represented by
our construction as follows:

_. left(1) ::V(a
C

,b
C

)((aC

,b
C

) Node))V(a
C

,b
C

)((aC

,b
C

) Node) . (28)

Thus, the representation map is injective on types; subtyping is represented by type
instantiation on the HOL-level. However, due to our universe construction, the theory
on accessors, casts, etc. is also extensible.

All other operations like casting, type- or kind-check are lifted as follows:

obj

(1)
[A] ⌘ l s . (obj s)(0)

[A] (29)

isType(1)
A obj⌘ l s . isType(0)

A (obj s) (30)

isKind(1)
A obj⌘ l s . isKind(0)

A (obj s) (31)
∂ obj⌘ l s . def(obj s) (32)

Their types are analogously lifted as in the accessor as discussed above.
In the following, we show how the other operations of COOL can be represented

by HOL operators (for simplicity, we will use overloading of operator symbols). Con-
stant symbols in COOL like 0,1,2,. . ., true,false, {} will be represented by constant
functions that just drop the state: l s .0,l s .1,l s .2,. . ., l s . true,l s . false, l s .{}.

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 233

All operators of the COOL language are just “lifted” from their HOL counterparts by
passing the implicit state argument, for example, the case of the binary operators is
covered by:

X opY = l s .(X s)op (Y s) (33)

where op stands for _ = _, _^_,_! _, _+_, _⇤_, _ 2 _, _[_,
If a path expression is used as an expression, i. e., as argument of a COOL opera-

tor as in self . i(1) > 5, for example, it is implicitly dropped: (l s .p(self . i(1))sq) > 5.
This is motivated by turning COOL in a conventional HOL-language without excep-
tional elements (similar to Spec# or JML); these elements were strictly propagated
within path expressions, can be tested via ∂ obj, and will be interpreted by arbitrary,
underspecified values when passed as arguments to operators.

The lifted operations, for example _^ _, have the type Va(bool)) Va(bool))
Va(bool) if the corresponding operator _^ _ of the meta-language HOL has the type
bool) bool) bool. This exemplifies again the injectivity of the representation map
on associated types.

The judgment s |= E is simply a shortcut for E s . As a consequence of these
definitions, s |= E ^ E

0 is just equivalent to s |= E ^ s |= E

0 (recall that we use
overloading).

An alternative semantic choice for the semantics of COOL consists in strict exten-
sions of the operators and a three-valued logic; a further subdivision here is a strict
logic (cf. [14]) or a Strong Kleene Logic (cf. [12]). Such an alternative allows for a
uniform handling of exceptions (like illegal memory access or “1div0”) as occurs in
programming languages like Java. The key difference to the semantics of COOL as
presented above is the definition for the operator family:

X opY = l s .

(

x

p

X sq

op

p

Y sq

y

if def(X)^def(Y),
? otherwise

(34)

where the case of monadic operators and constants is handled analogously. Another
difference is the injection of paths into expressions, which is just the identity in this
variant. However we will not further discuss this alternative here since it is clearly too
far away from the mainstream in object-oriented program verification.

Finally, the properties of the previous section can be rephrased for level 1. The
“lifted versions” of these rules will have to take the store s into account. This results
in two different patterns shown as follows:

s |= isType(1)
A obj

s |= isKind(1)
A obj

(35a)

s |= isType(1)
C obj

(obj

(0)
[B])

(1)
[A] s = obj

(1)
[A] s

(35b)

5 Level 2: Co-inductive Properties in Object Structures

A main contribution of our work is the encoding of co-inductive properties over object
structures, including the support for class invariants.

234 Achim D. Brucker · Burkhart Wolff

Recall our running example, i. e., Figure 1, where the class Node describes a
potentially infinite cyclic object structure. Later, we will give semantics to the two
invariants positive and flip. Since they represent recursive predicates, they must
be defined conservatively via greatest fixed-points. The Isabelle library also offers a
theory for the greatest fixed-point operator gfp ::(a set)a set))a set. For technical
reasons, we must talk over characteristic sets, e. g., Node_positive_Set, instead of
invariants, e. g., Node_positive, although both are closely connected:

Node_positive(self)⌘ self 2 Node_positive_Set
⌘ self 2 (l s . gfp(Node_positive_F s))

We pick the example definition Node_positive_F as core-prerequisite for the invari-
ant; recall that this invariant requires from the attribute i of class Node to have values
greater than 5:

Node_positive_F ::U 1
(aC,bC,bN) St) (U 1

(aC,bC,bN) St) (a
C

,b
C

) Node set)

) (U 1
(aC,bC,bN) St) (a

C

,b
C

) Node set)

Node_positive_F⌘ l s . l X .
n

self

�

� s ✏ ∂ self . i(1)^s ✏ self . i(1) > 5

^ s ✏ ∂ self . left(1) ! s ✏ isKind(1)
Node self . left(1)

^s ✏ (self . left(1)) 2 X

^ s ✏ ∂ self . right(1) ! s ✏ isKind(1)
Node self . right(1)

^s ✏ (self . right(1)) 2 X

o

(36)

The first part of this (generated) definition is a straightforward translation of the for-
mula in the inv part of the class declaration in Figure 1; the clauses s ✏ ∂ self . left(1)!
s ✏ isKind(1)

Node self . left(1) ^ s ✏ (self . left(1)) 2 X (and for _.right) are added
schematically as a result of the recursive type definitions.

For a given invariant from the input, our package generates definitions like the
one shown above and derives the following class invariant theorem expressing the
intuition of our invariant:

s ✏ Node_positive self = s ✏ ∂ self . i(1)

^s ✏ self . i(1) > 5

^ s ✏ ∂ self . left(1) ! s ✏ isKind(1)
Node self . left(1)

^s ✏ Node_positive self . left(1)

^ s ✏ ∂ self . right(1) ! s ✏ isKind(1)
Node self . right(1)

^s ✏ Node_positive self . right(1)

(37)

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 235

or equivalently (by extensionality and by COOL notation (see Section 4)):

Node_positive self = ∂ self . i(1)^self . i(1) > 5

^ ∂ self . left(1) ! isKind(1)
Node self . left(1)

^ Node_positive self . left(1)

^ ∂ self . right(1) ! isKind(1)
Node self . right(1)

^ Node_positive self . right(1)

(38)

Since our package supports the use of kind and type tests inside invariants, one can
establish useful constraints for verification. For the class Node, we can state the fol-
lowing invariant even on the level of the input:

inv positive_type: self.i> 5
^∂ self.left�! isType(1)

Node self.left

^∂ self.right�! isType(1)
Node self.right

This example is in fact a canonical alternative interpretation of the positive in-
variant: Node_positive leads only to the requirement that sub-graphs have the
Node-kind; the above declaration (which leads to structurally the same invariant the-
orem except that isKind(1)

Node _ predicates were replaced by their isType(1)
Node _ counter-

parts) strengthens this to the requirement that all reachable nodes have Node-type.
We call the characteristic sets of these alternative invariants the characteristic type

set, while the default is called the characteristic kind set.
For kind sets and type sets, the packages proves automatically by monotonicity of

the approximation functions and their point-wise inclusion:

s ✏ Node_positive_Type_Set✓ Node_positive_Set (39)

This kind of theorem is another example for properties that remain valid if we add
further classes in a class model.

Now we relate class invariants of subtypes to class invariants of supertypes. Here,
we use cast functions described in the previous section; we write self

(1)
[Node] for the

object self converted to the type Node of its superclass. The trick is done by defining
a new approximation for an inherited class CNode on the basis of the approximation
function of the superclass:

CNode_flip_F⌘ l s . l X .
⇢

self

�

�

�

�

⇣

self

(1)
[Node] 2

�

Node_positive_Fs (l x. x

(1)
[Node])

8

X

�

⌘

^ (CNode_flip self)
�

(40)

where _ 8 _ denotes the point-wise application.
Similar to the work of Berghofer and Wenzel [8] or Paulson [32] we can handle

mutual-recursive datatype definitions by encoding them into a type sum. However, we
already have a suitable type sum together with the needed injections and projections,
namely our universe type with the make and get methods for each class. The only
requirement is that a set of mutual recursive classes must be introduced “in parallel,”
i. e., as one extension of an existing universe.

236 Achim D. Brucker · Burkhart Wolff

These type sets have the usual properties that one associates with object-oriented
type systems. Let C

N

(K
N

) be the characteristic type set (characteristic kind set) of a
class N and let C

C

and K
C

be the corresponding type sets of a direct subclass C of N,
then our encoding process proves formally that the characteristic type set is a subset
of the kind set, i. e.:

s ✏ self 2C
N

�!s ✏ self 2K
N

. (41)

Moreover, the kind set of the subclass is (after type cast) a subset of the type set (and
thus also of the kind set) of the superclass:

s ✏ self 2K
C

�!s ✏ self

(1)
[N]2C

N

. (42)

These proofs are co-inductions and involve a kind of bi-simulation of (potentially)
infinite object structures. Further, these proofs depend on theorems that are already
proven over the pre-defined types, e. g., Object. These proofs where done in the
context of the initial universe U 0 and can be instantiated directly in the new uni-
verse without replaying the proof scripts; this is our main motivation for an extensible

construction.
On the basis of these definitions, we can now give an alternative, stronger seman-

tic interpretation of COOL. The key issue of this language interpretation is that the
definedness of an accessor function implies that the resulting object is indeed valid,
i. e., satisfies its class invariant. Thus, the static type of an object gets a meaning via
the class invariants, not only structurally as in the previous interpretation. The acces-
sors are defined like:

self . left(2) ⌘ l s .

(

self . left(1) if s ✏ self . left(1)2K
Node

? otherwise.
(43)

The key concepts of kind and type are interpreted as follows:

isType(2)
A self ⌘ l s .s ✏ self 2C

A

(44)

isKind(2)
A self ⌘ l s .s ✏ self 2K

A

(45)

All other semantic definitions for COOL remain unchanged.
The additional property of this semantic interpretation of COOL just formalizes

the intuition already stated above:

s |= ∂ (self . left(2))

s |= isKind(2)
Node self . left(2)

(46)

With these derived rules, defining valid states by requiring that set of objects in the
store satisfies the invariant becomes superfluous.

6 A Modular Proof-methodology for Object-oriented Modeling

In the previous sections, we discussed a technique to build extensible object-oriented
data models. Now we turn to the wider goal of a modular proof methodology for
object-oriented systems and explore achievements and limits of our approach with

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 237

respect to this goal. Two aspects of modular proofs over object-oriented models have
to be distinguished:

1. the modular construction of theories over object-data models, and
2. a modular way to represent dynamic type information or storage assumptions

underlying object-oriented programs.

With respect to the former, the question boils down to what degree extensions of class
models and theories built over them can be merged. With respect to the latter, we will
show how co-inductive properties over the store help to achieve this goal.

6.1 Non-overlapping Merges

The positive answer to the modularity question is that object-oriented data model the-
ories can be merged provided that the extensions to the underlying object-data models
are non-overlapping. Two extensions are non-overlapping, if their set of classes has
no common direct parent class (see Figure 4a). In these cases, there exists a most gen-
eral type instance of the merged object universe U 3 (the type unifier of both extended
universes U 2a and U 2b); thus, all theorems built over the extended universes are still
valid over the merged universe (see Figure 4a). We claim that the non-overlapping
case is the more important one; for example, all libraries of the HOL-OCL system [12]
were linked to the examples in its substantial example suite this way. Without exten-
sibility, the datatype package would have to require the recompilation of the libraries,

U 1:

A

U 2a:

A

C

U 2b:

A B

D

U 3:

A B

C D

(a) Non-conflicting Merges

U 1:

A

U 2a:

A

C

U 2b:

A

B

U 3:

A

BC

(b) Conflicting Merges

Figure 4 Merging Universes: Figure 4a illustrate the non-overlapping extension of a class A with one
direct subclass C and a new hierarchy consisting of the classes B and D which are rooted on the same
level as A. In contrast, Figure 4b illustrates a conflicting merge. In this case, the class A is extended
independently with the direct subclasses B and C which causes a conflict when merging these two
extensions.

238 Achim D. Brucker · Burkhart Wolff

which takes in the case of the HOL-OCL system about 20 minutes. In the following,
we discuss two approaches for tackling this limitation of our framework.

6.2 Overlapping Merges

Unfortunately, there is an important case in object-oriented modeling that will be
considered as an overlap in our package. Consider the case illustrated in Figure 4b.
Here, the parent class A is in the class set of both extensions (including parent classes).
The technical reason for the conflict is that the order of insertions of subclasses into a
parent class is relevant since the type sum a +b is not a commutative and associative
type constructor.

In our encoding scheme of object-oriented data models, this scenario of exten-
sions represents an overlap that the user is forced to resolve. One possibility is to
arrange an order of the extensions by changing the import hierarchy of theories pro-
ducing overlapping extensions. This worst case results in re-running the unmodified
proof scripts of either B or C. Another option is to resolve the (potential) conflict in ad-
vance by introducing an empty class B’ and let inherit B from there. A further option
consists in adding a mechanism into our package allowing to specify for a child-class
the position in the insertion-order.

6.3 Modularity in an Open World: Dynamic Typing

Our notion of extensible class models generalizes the distinction “open world assump-
tion” vs. “closed world assumption” widely used in object-oriented modeling. Our
universe construction is strictly “open world” by default; the case of a “closed world”
results from instantiating all a- and b -variables (“holes”) in the universe by the unit
type. Since such an instantiation can also be partial, there is a spectrum between both
extremes. Furthermore, one can distinguish a-finalizations, i. e., instantiation of a a-
variable in the universe by the unit type, and b -finalizations. The former closes a class
hierarchy with respect to subtyping, the latter prevent that a parent class may have fur-
ther direct children (which makes the automatic derivation of an exhaustion lemma
for this parent class possible).

In this and the subsequent section, we consider an extension of path expressions in
the COOL language by (side-effect free) methods. In usual object-oriented languages,
methods can be overridden, method invocations like in object-oriented languages re-
quire a mechanism for the resolution of overridden methods such as late binding

as used in Java. Late binding uses the dynamic type isType(1)
X self of self . The late-

binding method invocation is notorious for its difficulties for modular proof. Consider
the case of an operation:

method Node::m():Boolean
pre: P
post: Q

Assume that the implementation of m invokes itself recursively, e. g., by
self.left.m(). Based on an open world assumption, the postcondition Q cannot

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 239

be established in general since it is unknown which concrete implementation is called
at the invocation.

Based on our universe construction, there are two ways to cope with this un-
derspecification. First, finalizations of all child classes of Node results in a par-

tial closed world assumption allowing to treat the method invocation as case switch
over dynamic types and direct calls of method implementations. Second, similarly
to the co-inductive invariant example in Section 5 which ensures that a specific de-
referentiation is in fact defined, we can specify that a specific de-referentiation self . left(1)

has a given dynamic type. An analogous invariant Invleft(self) can be defined co-
inductively. From this invariant, we can directly infer facts like isType(1)

Node (self . left(1)),
and isType(1)

Node (self . left(1). left(1)), i. e., in an object graph satisfying this invariant,
the left “spine” must consist of nodes of dynamic type Node. Strengthening the pre-
condition P by Invleft(self) consequently allows to establish postcondition Q—in a
modular manner, since only the method implementation above has to be considered
in the proof. Invoking the method on an object graph that does not satisfy this invariant
can therefore be considered as a breach of the contract.

6.4 Modularity in an Open World: Storage Assumptions

Similarly to co-inductive invariants, it is possible via co-recursive functions to map
an object to the set of objects that can be reached along a particular path set. The def-
inition must be co-recursive, since object structures may represent a graph. However,
the presentation of this function may be based on a primitive-recursive approximation
function depending on a factor k :: nat that computes this object set only up to the
length k of the paths in the path set:

ObjSetAleft 0 self s = {}
ObjSetAleft k self s = if s 6|= ∂ self then {}

else {self}[ObjSetAleft (k�1) (self . left(1) s)s
(47)

The function ObjSetleft self s can then be defined as limit
[

n2Nat ObjSetAleft n self s . (48)

Moreover, we can add an internal state invariant, constraining our concept of
state, by using a type definition a St = {s :: oid * U a | Inv s}. Here, we require for
Inv that each oid points to an object that contains itself:

8oid 2 dom s . OidOf(ps oidq) = oid (49)

As a consequence, there exists a “one-to-one”-correspondence between objects and
their oid in a state. Thus, sets of objects can be viewed as sets of references, too, which
paves the way to interpret these reference sets in different states and specify that an
object did not change during a system transition or that there are no references from
one object structure into some critical part of another object structure.

240 Achim D. Brucker · Burkhart Wolff

7 Application: A Shallow Embedding of IMP++

In the following, we integrate the assertion language COOL for object-oriented data
models into a derived Hoare calculus for a small, non-trivial object-oriented language.
This language is pretty much in the spirit of Featherweight Java [18], in the sense that
it is reduced to the absolute minimum. IMP++ does not even comprise the concept of
a method invocation or a procedure call; on the other hand, it provides a “generic
slot” for these concepts via the CMD-construct, that allows for an arbitrary transition
over the entire program state. Given the dynamic type tests of the data model, it is
straightforward to define an arbitrary overload resolution within this slot. However,
demonstrating how this definition scales up with the presented machinery to a modu-
lar proof system for methods and their invocation, is a far more evolved subject that
we consider beyond the scope of this paper.

Instead, we focus on how our type-safe framework pays off by simplifying the
proof rules and consequently the proofs. For example, no side-conditions are nec-
essary related to well-formedness of objects, the syntactic admissibility of attribute
accesses of an object or to reasoning along the class hierarchy as in the deep embed-
ding of, e. g., NanoJava [31].

We will show that a compact Hoare logic can be derived from a denotational
semantics for IMP++. As the basis, we use IMP [27], a canonical imperative core lan-
guage available in the Isabelle/HOL library; this language has been inspired by a stan-
dard textbook on program semantics [34]. We will extend IMP with object-oriented
types, object creation and object update, and a simple form of exceptional computa-
tion motivated by illegal memory accesses. Finally, we present a small program that
establishes the class invariant of our CNode example—although no single transition
(i. e., single command) of IMP++ can establish it.

In contrast to the previous sections where definitions and proofs were done auto-
matically for all classes and attributes, the proofs presented in this section are created
interactively. However, the rules for the Hoare logic are proven once and for all, and
the derivation of the rules for update and create could be automated.

7.1 Syntax

The syntax of IMP++ is introduced via a datatype definition:

a com = SKIP | EXN
| CMDa cmd | IFa bexpTHENa comELSEa com
| a com ; a com | WHILEa bexpDOa com

(50)

SKIP denotes the empty, successfully terminating command, EXN the program that
raises an exception (IMP++ possesses only one). The generic command CMD takes as
argument a function a cmd which is a synonym for a function a state) a state?.
Thus, a a cmd is allowed to raise an exception; in our context, this will be used to
react operationally on undefined argument-oid’s of creation and update operations.
The sequential composition, the conditional and the while loop are the conventional
constructs of the language. The latter two are controlled by a Boolean expression
a bexp which is a synonym for a state) bool (resp. a state) bool? in the case of a

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 241

strict version of COOL, as used in [14]). Any COOL expression has a type which is an
instance of a bexp, thus, it can be also used as control expression in IMP++.

7.2 Denotational Semantics

The denotational semantics of an imperative language is a relation on states; since
uncaught exceptions may occur on the command level, we have also error states de-
noted by ?. Thus, the type of the relation is (a state?⇥a state?)set. As a conse-
quence, we need as a prerequisite the “strict composition” _�? _ of relations, of type
(b?⇥ g?) set) (a?⇥b?) set) (a?⇥ g?) set on relations:

r �? s⌘ {(?,?)}[{(x,z) | def x^ (9y. def y^ (x,y) 2 s^ (y,z) 2 r)}
[{(x,z) | def x^ (9y.¬def y^ (x,y) 2 s^ z =?)} (51)

The definition of the semantic function C is a primitive recursion over the syntax:

C(SKIP) = Id (52a)
C(EXN) = {(s, t) | t =?} (52b)

C(CMD f) = {(s, t) | s =?^ t =?}[{(s, t) | defs^ t = f

p

s

q}
(52c)

C(c0;c1) = C(c1)�?C(c0) (52d)
C(IFbTHEN c1 ELSE c2) = {(s, t) | s =?^ t =?}

[{(s, t) | defs^b

p

s

q = true^ (s, t) 2Cc1} (52e)
[{(s, t) | defs^b

p

s

q = false^ (s, t) 2Cc2}
C(WHILEbDO c) = lfp(G b (C c)) (52f)

where G is the usual approximation functional for the least fixed-point operator lfp,
enriched by the cases for undefined states:

G bcd⌘ (l f .{(s, t) | s =?^t =?}[{(s, t) | defs^b

p

s

q = true^(s, t)2 (f �? cd)}
[{(s, t) | defs^b

p

s

q = false^ s = t}) (53)

7.3 A Derived Hoare Logic

In our setting, assertions are functions a :: bot state?) bool. The validity of a Hoare
triple is stated as traditional:

|= {P}c{Q}⌘ 8s t.(s, t) 2C(c)�! P s�! Qt (54)

Based on the definition for C, we can derive a Hoare calculus for IMP++. Since we
focus on correctness proof and not completeness, we present the rules for validity
of |= _ directly, avoiding a detour via a derivability notion `. Moreover, we use the
abbreviation �P for l s . defs ^Ps . Thus, assertions like ✏ {�P

0}c{�Q

0} relate
“non-exception” states allowing inference of normal behavior. The derived calculus
is now surprisingly standard (see Table 1).

242 Achim D. Brucker · Burkhart Wolff

✏ {�P}SKIP{�P} (55a)

8s.P0 s�! P s ✏ {P}c{Q} 8s.Q s�! Q

0
s

✏ {P

0}c{Q

0} (55b)

✏ {�P}c{�Q} ✏ {�Q}d{�R}

✏ {�P}c;d {�R} (56a)

✏ {�l s .Ps ^ (psq

✏ b)}c{�P}

✏ {�P}{WHILE}b{DO}c{�l s .Ps ^ (psq

✏ ¬b)} (56b)

✏ {l s .s =?} c{l s .s =?} (57a) ✏ {�l s .psq

✏ ∂ f ^Q(f

psq)}CMD f{�Q} (57b)

✏ {�l s .(Ps)^ (psq

✏ b)^ (psq

✏ ∂ b)}c{�Q} ✏ {�l s .(Ps)^ (psq

✏ ¬b)^ (psq

✏ ∂ b)}d{�Q}

✏ {�P}IF b THEN c ELSE d{�Q}
(58)

Table 1 The Hoare Calculus for IMP++ is derived from the semantic definitions of IMP++.

7.4 Data Model Specific Hoare Rules

Recall our running example depicted in Figure 1. Besides the type-safe accessor func-
tions, we need families of level-1 (store-related) update and creation operations on
objects.

The lifting of update operations to level 1 is straightforward:

self .set(1)
left E ⌘ l s .s(OidOfself := self s .set(0)

left (E s)) (59)

The operation _ (_ := _) denotes the usual update on functions. Instead of
CMD(self .set(1)

left E) we write self . left := E.
With respect to the creation operations, we define later:

newOids ⌘ e x.x /2 doms (60)

where e x.P x is the Hilbert-operator that chooses an arbitrary x satisfying P.

newNode oid ⌘
x

((Objectt,oid),
x

((Nodet,?,?,?,?)
y

)
y

(61)

The creation operation generates a new object of some type and stores the reference
to it in a given attribute of self :

self .new(1)
Node[left] ⌘ l s . lets 0 = s(newOids := newNode (newOids))

inself .set(1)
left (newNode (newOids))s 0

(62)

Instead of CMD(self .new(1)
Node[left]) we write self . left := new(Node).

From these definitions, the following family of class model-specific Hoare rules
is derived (as usual, we pick the case for attribute left):

|= {�l s .(psq

✏ (∂ sel f))^Q(self .set(1)
left E

psq)}self . left := E{�Q} (63)

The analogous case for the creation is a special case of this rule.

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 243

7.5 An Example in IMP++

In a fictive object-oriented language, a program that produces the smallest non-trivial
object system satisfying the invariant of class CNode, looks as follows:

method CNode m():CNode;
var H1:CNode;
var H2:CNode;
begin

H1:= new(CNode);
H2:= new(CNode);
H1.i:= 7;
H1.color:=true;
H1.left:=H2;
H1.right:=H2;
H2.i:= 9;
H2.color:=false;
H2.left:=H1;
H2.right:=H1;
return H1

end

We cannot represent this method directly in IMP++ due to the lack of syntax. However,
we can represent the local variables by extending the underlying class model by a
stack object class for method m (a terminology also used in the Java language spec-
ification), and express pre and post conditions for the body called mbody translated
one-to-one into IMP++.

The stack-object class class m_stobj has the form:

class m_stobj
attributes

self : Node
return : CNode
H1 : CNode
H2 : CNode

end

i. e., it comprises attributes for the local variables H1 and H2 with the previously de-
scribed types as well as a return attribute of type CNode. The package will then
generate the usual update functions for this class and give semantics to the corre-
sponding assignments in our example program (the return statement is viewed as an
update to the return attribute). With these preliminaries, the encoding of the body
of method m is one-to-one.

We want to specify that the program establishes by a sequence of creation and
update steps the global invariant. Assuming that the stack object m is defined when
the method is called (an assumption that reflects the operational behavior of method
invocations), the verification of the body is stated in Isabelle as proof goal follows:

✏ {�l s .s |= ∂ m}mbody{�s ✏ CNode_flip_strong(m. return(1))} (64)

244 Achim D. Brucker · Burkhart Wolff

The interactive proof of this statement proceeds in essentially two phases: First, by
several applications of the consequence rule (shown in Equation 56a in Table 1) and
the update-rules shown in Equation 59, we accumulate an equation system as asser-
tion:

s |= ∂ (m.H1(1))

^ m.H1. i(1) = 7^ m.H1.color(1) = true

^ m.H1. left(1) = m.H2(1)^ m.H1. right(1) = m.H2(1)

^ ∂ (m.H2(1)) (65)

^ m.H2. i(1) = 9^ m.H2.color(1) = false

^ m.H2. left(1) = m.H1(1)^ m.H2. right(1) = m.H1(1)

^ m. return(1) = m.H1(1)

Here, we dropped the superscript for all nested accessor functions to increase the
readability. This assertion must imply the postcondition, which is reduced to:

s |= m. return(1) 2 CNode_flip_strong_Set (66)

The gap is bridged by the application of the derived fixed-point-induction:

^

X .

[s |= m. return(1) 2 X]
···

s |= m. return(1) 2 (l s .CNode_flip_strong_F s X)

s |= m. return(1) 2 (l s . gfp(CNode_flip_strong_F s))

(67)

The example also shows how liberal invariants (a freshly generated object only satis-
fies such an invariant since the .left and .right attribute are uninitialized) can be used
to establish stronger ones (.left and .right always refer to defined objects). In [21] lo-
cal flags in objects are suggested to switch on and off parts of static class invariants.
Our approach does not need such flags (while it can mimic them), rather, we would
generate versions of invariants and relate them via co-induction automatically.

8 Conclusion

We presented an extensible universe construction supporting object-oriented data mod-
els providing subtyping and (single) inheritance. As syntactic interface for object-
oriented data models, we used the annotation language COOL which we interpreted
in two logical embeddings called level 1 and level 2. The underlying mapping from
object-language types to types in the HOL representation is injective, which implies
type-safety. We introduce co-inductive properties on object systems via characteristic
sets defined by greatest fixed-points; these sets also give a semantics for class invari-
ants. In our package, constructors and update-operations were handled too.

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 245

Invoice eBank Company Royals and Loyals

number of classes 3 8 7 13
size of OCL specification (lines) 149 114 210 520
generated theorems 647 1444 1312 2516
time needed for import (in seconds) 12 42 49 136

Table 2 Importing Different UML/OCL Specifications.

Finally, we integrated COOL inside a Hoare calculus for a conceptual imperative
core-language with object creation and object update. We used both interpretations
for COOL—level 1 for small-step reasoning, level 2 for big-step reasoning—to verify
a program generating a cyclic object graph against its specification.

The universe-construction is supported by a package (developed as part of the
HOL-OCL project [12]). Generated theories on object systems can be applied for both
object-oriented specification languages like OCL and programming language embed-
dings using the type-safe shallow embedding technique.

In the context of HOL-OCL, we gained some experimental data that shows the fea-
sibility of the technique: Table 2 describes the size of each of the above mentioned
models together with the number of generated theorems and the time needed for im-
porting them into HOL-OCL. The number of generated theorems depends linearly on
the number of classes, attributes, associations, operations and COOL constraints. For
generalizations, a quadratic number (with respect to the number of classes in the
model) of casting definitions have to be generated and also a quadratic number of
theorems have to be proven. The time for encoding the models depends on the num-
ber of theorems generated as well as their complexity.

8.1 Related Work

Datatype packages have been considered mostly in the context of HOL or functional
programming languages. Systems like [23,8] build over an S-expression like term
universe (co)-inductive sets which are abstracted to (freely generated) datatypes. Paul-
son’s inductive package [32] also uses subsets of the ZF set universe i. To the best of
our knowledge, this is the first attempt to apply this technology to type-safe object-
oriented data models derived on-the-fly from conservative definitions.

There is a substantial body on literature on object-oriented language semantics
based on deep embeddings. A more conceptual work is NanoJava [31], which is in
spirit quite similar to IMP++, albeit focusing on meta-theoretic proofs like complete-
ness. Although the proofs done with NanoJava are rather smallish (in this respect
quite similar to IMP++), it is instructive to compare its rules with the ones of IMP++.
We just consider the case of a cast-operation in an own subcalculus on expressions:

A |=
e

{P}e

⇢

l v s.

✓

case v ofNull) true
| Addra) obj class s a <

C

C

◆

! Q v s

�

(Cast)

A |=
e

{P}Cast C e{Q}
(68)

These side-conditions in subcalculi deciding whether the type of a reference is con-
form to another type is just superfluous in IMP++, where type-casts were represented as
simple equational rules that are amenable to rewriting. The Isabelle/Bali Project [30]

246 Achim D. Brucker · Burkhart Wolff

followed a similar approach to NanoJava, but for a quite substantial fragment of the
Java language. It served as a formal reference semantics in several other projects (see
below). Working with this embedding is technically very challenging, both with re-
spect to time and memory consumption. The complexity of side-condition evaluations
inspired for some time the development of code-generators for Isabelle. The approach
is in principle compatible to open world assumptions, but not easily amenable for
modular verification.

The KeY Tool [3,7] is a verification environment integrated into a CASE tool. It
offers remarkable support for development and claims a high degree of proof automa-
tion. However, it is based on an axiomatic description of Java and C like languages
in Dynamic Logic, which is implemented in taclets, i. e., purely syntactic transforma-
tions of a prover state. For fragments of the substantial rule-sets, formal verifications
with respect to an operational Java model in Maude and Isabelle/Bali have been un-
dertaken at some stage of the system development. In contrast, our datatype package
makes comprehensive proofs for the consistency of the extensible data model based
on an LCF-style kernel allowing only logical manipulations with respect to HOL.

Jive [24] compiles an object-oriented data model into a fixed Isabelle theory and
includes this into a derived Hoare calculus over a substantial fragment of Java. The
system shares basic ideas with respect to the object model with Spec# (see below).
However, the overall construction is based on a closed world assumption and thus,
not extensible. An extension of an object-model results in a recompilation that needs
at present 20 minutes for small programs.

To the probably most advanced tools belong verification condition generator ap-
proaches such as Boogie for Spec# [5,21], which is excellently integrated into a CASE
tool. The underlying idea is to compile object-oriented programs into standard imper-
ative ones and to apply a verification condition generator on the latter. The approach
requires the generation of a quite substantial axiomatization of an object-oriented
memory/machine model, and an explicit first-order representation of object-oriented
types within a logical context in which the verification conditions were stated. The
second author witnessed several logical inconsistencies in an attempt to verify the
memory/machine model of a C variant of the Boogie system with Isabelle. We believe
that the properties of our object-oriented memory model, even if taken axiomatically,
could provide assurance. If required, our system can generate a proof of consistency
for given data models.

Krakatoa [22] and several similar tools for JML follow a similar approach as Boo-
gie for Spec#. While the core, the Why tool supporting an alias-free imperative lan-
guage, has been verified, the overall tool including object-oriented compilation is not.
Inconsistencies of past versions of axiomatic memory models have been reported.
The object-oriented model has only a constrained notion of dynamic type and is only
partly extensible.

For shallow embeddings, there is the work by Smith et al. [33]. In this approach,
however, emphasis is put on a universal type for the method table of a class. This
results in local “universes” for input and output types of methods and the need for
reasoning on class isomorphisms. As the authors admit, this “creates considerable
formal overhead.” Subtyping on objects must be expressed implicitly via refinement.
Somewhat more similar to our work are the encodings provided by Huisman [17] and
its follow-up by Jacobs [19]. The approach is based on a straightforward compilation
of class systems to families of records; this is in contrast to our work restricted to
closed world data models. The follow-up paper, developed in the context of the LOOP

http://www.brucker.ch/
http://www.lri.fr/~wolff

An Extensible Encoding of Object-oriented Data Models in HOL 247

tool, states our work on automated class invariant derivation explicitly as desirable
future work. The approach by Yatake [35] is similar to Huisman’s and suffers from
the same limitations; however, the derivation of the elementary data model rules is
very similar to ours.

With respect to extensibility of data structures, the idea of using parametric poly-
morphism is partly folklore in HOL research communities; for example, extensible
records and their application for some form of subtyping has been described in HOOL [26].
Since only a-extensions are used, this results in a restricted form of class types with
no cast mechanism to a Object.

8.2 Future Work

We see the following lines of future research:
Towards a Generic Package. The supported type language as well as the syntax

for the co-induction schemes is fixed in our package so far. More generic support
for annotation languages like OCL, COOL or its strict version is required to make our
package more widely applicable.

Support for Inductive Constraints. By introducing measure-functions over object
structures, inductive datatypes can be characterized for defined measures of an ob-
ject. This paves the way for the usual structural induction and well-founded recursion
schemes.

Support of built-in Co-recursion. Co-recursion can be used to define e. g., deep
object equalities.

Deriving VCG. Similar to the IMP-theory, verification condition generators for
IMP++ programs can be proven sound and complete. This leads to effective program
verification techniques based entirely on derived rules.

Acknowledgements We thank Lukas Brügger for valuable discussions and his proof-work within
IMP++.

References

1. UML 2.0 OCL specification (2003). Available as OMG document ptc/03-10-14
2. Unified modeling language specification (version 1.5) (2003). Available as OMG document

formal/03-03-01
3. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski, W.,

Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool 4(1), 32–54 (2005). 10.1007/s10270-004-
0058-x

4. Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth through Proof,
2nd edn. (2002)

5. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
G. Barthe, L. Burdy, M. Huisman, J.L. Lanet, T. Muntean (eds.) Construction and Analy-
sis of Safe, Secure, and Interoperable Smart Devices (CASSIS), vol. 3362, pp. 49–69 (2005).
10.1007/b105030

6. Basin, D.A., Kuruma, H., Takaragi, K., Wolff, B.: Verification of a signature architecture with
HOL-Z. In: J. Fitzgerald, I.J. Hayes, A. Tarlecki (eds.) FM 2005: Formal Methods, vol. 3582,
pp. 269–285 (2005). 10.1007/11526841_19

7. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The KeY
Approach, vol. 4334 (2007). 10.1007/978-3-540-69061-0

http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://dx.doi.org/10.1007/s10270-004-0058-x
http://dx.doi.org/10.1007/s10270-004-0058-x
http://dx.doi.org/10.1007/b105030
http://dx.doi.org/10.1007/11526841_19
http://dx.doi.org/10.1007/978-3-540-69061-0

248 Achim D. Brucker · Burkhart Wolff

8. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-logic engi-
neering. In: Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, L. Théry (eds.) Theorem Proving in
Higher Order Logics (TPHOLS), vol. 1690, pp. 19–36 (1999). 10.1007/3-540-48256-3_3

9. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie—an interactive prover for the Boogie
program-verifier. In: O.A. Mohamed, C. Muñoz, S. Tahar (eds.) Theorem Proving in Higher
Order Logics, vol. 5170, pp. 150–166 (2008). 10.1007/978-3-540-71067-7_15

10. Brucker, A.D.: An interactive proof environment for object-oriented specifications. Ph.D. the-
sis, ETH Zurich (2007). URL http://www.brucker.ch/bibliography/abstract/
brucker-interactive-2007. ETH Dissertation No. 17097.

11. Brucker, A.D., Rittinger, F., Wolff, B.: HOL-Z 2.0: A proof environment for Z-specifications.
Journal of Universal Computer Science 9(2), 152–172 (2003).

12. Brucker, A.D., Wolff, B.: The HOL-OCL book. Tech. Rep. 525, ETH Zurich
(2006). URL http://www.brucker.ch/bibliography/abstract/brucker.
ea-hol-ocl-book-2006

13. Brucker, A.D., Wolff, B.: HOL-OCL – A Formal Proof Environment for UML/OCL. In: J. Fi-
adeiro, P. Inverardi (eds.) Fundamental Approaches to Software Engineering (FASE08), 4961,
pp. 97–100 (2008). 10.1007/978-3-540-78743-3_8.

14. Brucker, A.D., Wolff, B.: Extensible universes for object-oriented data models. In: J. Vitek (ed.)
ECOOP 2008 – Object-Oriented Programming, 5142, pp. 438–462 (2008). 10.1007/978-3-540-
70592-5_19.

15. Drossopoulou, S., Eisenbach, S.: Describing the semantics of Java and proving type sound-
ness. In: J. Alves-Foss (ed.) Formal Syntax and Semantics of Java, vol. 1523, pp. 41–82 (1999).
10.1007/3-540-48737-9_2

16. Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics for classes and
mixins. In: J. Alves-Foss (ed.) Formal Syntax and Semantics of Java, vol. 1523, pp. 241–269
(1999). 10.1007/3-540-48737-9_7

17. Huisman, M., Jacobs, B.: Inheritance in higher order logic: Modeling and reasoning. In: M. Aa-
gaard, J. Harrison (eds.) Theorem Proving in Higher Order Logics (TPHOLS), vol. 1869, pp.
301–319 (2000). 10.1007/3-540-44659-1_19

18. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java and
GJ 23(3), 396–450 (2001). 10.1145/503502.503505

19. Jacobs, B., Poll, E.: Java program verification at Nijmegen: Developments and perspective. In:
K. Futatsugi, F. Mizoguchi, N. Yonezaki (eds.) Software Security—Theories and Systems (ISSS),
vol. 3233, pp. 134–153 (2004). 10.1007/b102118

20. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: H. Kilov,
B. Rumpe, I. Simmonds (eds.) Behavioral Specifications of Businesses and Systems, pp. 175–188
(1999)

21. Leino, K.R.M., Müller, P.: Modular verification of static class invariants. In: J. Fitzger-
ald, I.J. Hayes, A. Tarlecki (eds.) FM 2005: Formal Methods, vol. 3582, pp. 26–42 (2005).
10.1007/11526841_4

22. Marché, C., Paulin-Mohring, C.: Reasoning about Java programs with aliasing and frame condi-
tions. In: J. Hurd, T.F. Melham (eds.) Theorem Proving in Higher Order Logics (TPHOLS), vol.
3603, pp. 179–194 (2005). 10.1007/11541868_12

23. Melham, T.F.: A package for inductive relation definitions in HOL. In: M. Archer, J.J. Joyce,
K.N. Levitt, P.J. Windley (eds.) International Workshop on the HOL Theorem Proving System
and its Applications (TPHOLS), pp. 350–357 (1992)

24. Meyer, J., Poetzsch-Heffter, A.: An architecture for interactive program provers. In: S. Graf,
M.I. Schwartzbach (eds.) Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), vol. 1785, pp. 63–77 (2000)

25. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF 9(2), 191–223
(1999). 10.1017/S095679689900341X

26. Naraschewski, W., Wenzel, M.: Object-oriented verification based on record subtyping in higher-
order logic. In: J. Grundy, M.C. Newey (eds.) Theorem Proving in Higher Order Logics
(TPHOLS), vol. 1479, pp. 349–366 (1998). 10.1007/BFb0055146

27. Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook 10(2), 171–186
(1998). 10.1007/s001650050009

28. Nipkow, T., von Oheimb, D.: Java`ight

is type-safe—definitely. In: ACM Symp. Principles of
Programming Languages (POPL), pp. 161–170 (1998). 10.1145/268946.268960

29. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order
Logic, vol. 2283 (2002). 10.1007/3-540-45949-9

http://www.brucker.ch/
http://www.lri.fr/~wolff
http://dx.doi.org/10.1007/3-540-48256-3_3
http://dx.doi.org/10.1007/978-3-540-71067-7_15
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://dx.doi.org/10.1007/978-3-540-70592-5_19
http://dx.doi.org/10.1007/978-3-540-70592-5_19
http://dx.doi.org/10.1007/3-540-48737-9_2
http://dx.doi.org/10.1007/3-540-48737-9_7
http://dx.doi.org/10.1007/3-540-44659-1_19
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1007/b102118
http://dx.doi.org/10.1007/11526841_4
http://dx.doi.org/10.1007/11541868_12
http://dx.doi.org/10.1017/S095679689900341X
http://dx.doi.org/10.1007/BFb0055146
http://dx.doi.org/10.1007/s001650050009
http://dx.doi.org/10.1145/268946.268960
http://dx.doi.org/10.1007/3-540-45949-9

An Extensible Encoding of Object-oriented Data Models in HOL 249

30. von Oheimb, D.: Analyzing Java in Isabelle/HOL: Formalization, type safety and Hoare logic.
Ph.D. thesis, Technische Universität München (2001)

31. von Oheimb, D., Nipkow, T.: Hoare logic for NanoJava: Auxiliary variables, side effects, and
virtual methods revisited. In: L.H. Eriksson, P.A. Lindsay (eds.) FME 2002: Formal Methods—
Getting IT Right, vol. 2391, pp. 89–105 (2002). 10.1007/3-540-45614-7_6

32. Paulson, L.C.: A fixedpoint approach to (co)inductive and (co)datatype definitions. In: G. Plotkin,
C. Stirling, M. Tofte (eds.) Proof, Language, and Interaction: Essays in Honour of Robin Milner,
pp. 187–211 (2000)

33. Smith, G., Kammüller, F., Santen, T.: Encoding Object-Z in Isabelle/HOL. In: D. Bert, J.P.
Bowen, M.C. Henson, K. Robinson (eds.) ZB 2002: Formal Specification and Development in Z
and B, vol. 2272, pp. 82–99 (2002). 10.1007/3-540-45648-1_5

34. Winskel, G.: The Formal Semantics of Programming Languages (1993)
35. Yatake, K., Aoki, T., Katayama, T.: Implementing application-specific object-oriented theories in

HOL. In: D.V. Hung, M. Wirsing (eds.) Theoretical Aspects of Computing—ICTAC 2005, vol.
3722, pp. 501–516 (2005). 10.1007/11560647_33

http://dx.doi.org/10.1007/3-540-45614-7_6
http://dx.doi.org/10.1007/3-540-45648-1_5
http://dx.doi.org/10.1007/11560647_33

	Introduction
	Preliminaries
	Level 0: Typed Object Universes
	Level 1: A First Type-safe Embedding of COOL
	Level 2: Co-inductive Properties in Object Structures
	A Modular Proof-methodology for Object-oriented Modeling
	Application: A Shallow Embedding of IMP++
	Conclusion

