
LabEx DigiCosme, Axe B.Wolff

 Combining Formal
Testing and Proving

Burkhart Wolff

Université Paris-Sud, LRI, CNRS

LabEx DigiCosme, Axe B.Wolff

Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

LabEx DigiCosme, Axe B.Wolff

Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● Well, Dijkstra was highly biased in the
scientific debate (and contributed a lot to
the approach); so can he be trusted ?

LabEx DigiCosme, Axe B.Wolff

Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● Wouldn't we question a statement by a boss
of the nuclear industry that “coal-fired
powerplants constitute a substantial risk for
the environment” ???

LabEx DigiCosme, Axe B.Wolff

Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● So: can proof-based verifications
guarantee the

“abscence of bugs” ?

An Architecture of a
Program Verifier (VCC)

● HOL-Boogie [Böhme, Wolff]

HOL-Boogie

.thyVCC

Boogie

.bpl

.bpl

axiomatization of the
“c virtual machine” (cvm)

.b2i

C
com
piler

Z3

LabEx DigiCosme, Axe B.Wolff

The Reality:
● In reality, proof-based verifications

make a lot of assumptions
(besides being costly in brain-power!)

● operational semantics should be faithfully executed
● complex memory-machine model

consistent (VCC: 800 axioms)
● correctness of the vc generation

(for concurrent C with “ownership”, “locks”, ... !):
● correctness of the vc generator and prover
● abscence of an environment that manipulates

the underlying state.

LabEx DigiCosme, Axe B.Wolff

Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● Then: is program verification by proof
at least always better than testing ?

LabEx DigiCosme, Axe B.Wolff

The Reality:
● Well, euh, strictly speaking not.

● in general, both techniques use mutually
independent assumptions, so ...

● ... nothing well-founded can be said in general !!!
It all depends on the concrete assumptions
and the concrete setting !

● there are actually cases in the literature where
bugs in “verified systems” (meaning: systems
verified by proof) were revealed by tests !

LabEx DigiCosme, Axe B.Wolff

Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● Can we always avoid testing ?

LabEx DigiCosme, Axe B.Wolff

Models of Systems for Tests
·

System
(hard + software +
 environment)

LabEx DigiCosme, Axe B.Wolff

Models of Systems for Tests
·

O
b
s
e
r
v
e
r

Test-Oracle correct
function or behaviour

System
(hard + software +
 environment)

a posteriori

run-time testing

LabEx DigiCosme, Axe B.Wolff

Models of Systems for Tests
·

M
o
d
e
l

Model describing
function or behaviour

System
(hard + software +
 environment)

a posteriori

run-time testing

a priori

run-time testing

LabEx DigiCosme, Axe B.Wolff

Verification by
Model-based Testing ...

·
● ... can be done post-hoc; significant projects

“reverse engineer” the model of a legacy system

● ... attempts to find bugs in specifications EARLY
(and can thus complement proof-based verification ...)

● ... can help system integration processes
in a partly unknown environment (“embedded systems”)

Nothing of this can be done by
proof-based verification !

LabEx DigiCosme, Axe B.Wolff

Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● Test and Proofs, are they actually adversaries?

(Tony Hoare, POPL2012, says “meanwhile no”).

LabEx DigiCosme, Axe B.Wolff

Agenda
● MBT Tool HOL-TestGen (based on Isabelle/HOL)

and outline its method

● Own Case Studies

● Demo

● Conclusion

LabEx DigiCosme, Axe B.Wolff

HOL-TestGen by Example

● Step I in the TestGen - method:

● write Test Document containing HOL Definitions
‚

text{* We include the TestGen system and
start with a litte example *}

Triangle = Testing +

‚ text{* The result type is defined by: *}
‚ datatype triangle = equilateral | scalene |

 isosceles | error

‚ constdefs triangle :: "[nat,nat,nat] => bool"
‚ "triangle x y z == (0<x ∧ 0<y ∧ 0<z ∧
‚ (z<x+y) ∧ (x<y+z) ∧ (y<x+z))"

. . .

LabEx DigiCosme, Axe B.Wolff

HOL-TestGen by Example

● Step II in the TestGen - method:
● containing a Test Specification TS in HOL ... (ctd'd):

. . .
testspec TS:
“prog(x, y, z) =
 if triangle x y z
 then if x = y
 then if y = z then equilateral
 else isosceles
 else if y = z then isosceles
 else if x = z then isosceles
 else scalene
 else error”
. . .

● where prog is the program under test

LabEx DigiCosme, Axe B.Wolff

HOL-TestGen by Example

● Step III in the TestGen - method:

● fire generate cases tactic and get proof-state:

. . .

apply(gen_test_cases 3 1 simp: add_commute)

LabEx DigiCosme, Axe B.Wolff

HOL-TestGen by Example

● Step III in the TestGen - method:

● fire generate cases tactic and get proof-state:

. . .

� ⟦0 < z; z < z + z � ⟧ ⟹
 prog(z, z, z) = equilateral

� ⟦x ¯ z; 0 < x; 0 < z; z < x + z; x < z + z ⟧ ⟹
 prog(x, z, z) = isosceles

� ⟦y ¯ z; z y;¬z < z + y ⟧ ⟹
 prog(z, y, z) = error

LabEx DigiCosme, Axe B.Wolff

A Step Back: Test-Theorem

● corresponding to a Test Theorem:

● consisting of 26 test cases C
1
 to C

26

(having the form of Horn clauses, where the
 premises are called constraints)

● consisting of 13 Explicit Test-Hypothesis THYP (H)

● establishing a formal link between Test and Proof

C
1
 ⟹ . . . C

26
 ⟹ THYP H

1
 ⟹ THYP H

13
 ⟹ TS

LabEx DigiCosme, Axe B.Wolff

HOL-TestGen by Example

● Step V in the TestGen – method:

● fire generate cases tactic and get proof-state and
produce test statements (i.e. premises of the form):

. . .
gen_test_data “Triangle”

LabEx DigiCosme, Axe B.Wolff

HOL-TestGen by Example

● Step V in the TestGen – method:

● fire generate cases tactic and get proof-state and
produce test statements (i.e. premises of the form):

. . .
prog(3, 3, 3) = equilateral
prog(4, 6, 0) = error

LabEx DigiCosme, Axe B.Wolff

HOL-TestGen by Example

● Step VI in the TestGen – method:

● Convert test-data automatically into a test driver.

. . .
gen_test_script “Triangle”

In our case, this is an SML program that
fires the test-harness, which can be linked to
any .o file containing the program under test...
(so, the SUT must not be SML, rather C, Java, ...)

LabEx DigiCosme, Axe B.Wolff

Own Case Study: Red Black Trees
 Red-Black-Trees: Test Specification

 testspec :
 (redinv t ∧

 blackinv t)

 f

(redinv (delete x t) ∧
 blackinv (delete x t))

 where delete is the program under test.

LabEx DigiCosme, Axe B.Wolff

Own Case Study: Firewalls + UPF
● Access Control Policies represent a key

element of security for Networks, Data-Bases, ...

● We modeled a “Unified Policy Framework”
(UPF) and specialized our test-case generation
approach

● ... used (internally) substantial interactive theorem
proving for correctness of normalization
theorem.

Own Case Study: Firewalls + UPF

● UPF (A Theory in HOL / for HOL-TestGen)
· A Policy: A Decision Function

datatype α decision = allow α | deny α

types (α,β) policy = α β decision (* = α ⇀ ⇒ β option *)
 notation α ⟴ β = (α,β) policy

· Operators
definition ∅ λ y. None≡

definition p(x ↦ t) λ y. if y = x then A else p y≡

definition A {x. y. x = allow y} , D {x. y. x = deny y}≡ ≡∃ ∃

definition p(x+↦t) p(x ≡ ↦ allow t) p(x−↦t) p(x ≡ ↦ deny t)

definition (*AllowAll*) Af λ x. allow(f x),(*DenyAll*) Df λ x. deny(f x)≡ ≡∀ ∀

… domain / range restriction S p, p S, override p◁ ▷ 1 p⨁ 2 ...

LabEx DigiCosme, Axe B.Wolff

Own Case Study: Firewalls + UPF

 DEMO !

LabEx DigiCosme, Axe B.Wolff

Conclusion: Test & Proof
● ... can never ever establish the absense of “Bugs”

in a system! Never ever. Both of them.

● ... can, when combined, further increase
confidence in verification results by
using mutually independent assumptions.

● ... can, when combined, offer new ways to
tackle abstraction and state space explosion.
(UPF Normalization Theorem)

● ... can share Tools and Tool development efforts.
(Parallelization, Interfaces, Counter-Example Gen.)

LabEx DigiCosme, Axe B.Wolff

TestGen: Symbolic Computations
pre x f post (x, PUT x)

case-splitter
(variables+types: regularity hypothesis
patterns: domain specific test rules)

case-solver
(simplifier, SMT-solver, ...)

case-normalizer
(CNF +)

selection-former
(inserts uniformity hypothesis)

k times ...

LabEx DigiCosme, Axe B.Wolff

Own Case Study: Red Black Trees
● Statistics:

348 test cases were generated, within 2 min.

● one Error in the SML library was found,
that makes crucial violation against redblack-
invariants; makes lookup linear

● ... error not found within 12 years ...

● ... reproduced meanwhile by random test tool

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

