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Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 
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Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● Well, Dijkstra was highly biased in the 
scientific debate (and contributed a lot to 
the approach); so can he be trusted ? 
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Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● Wouldn't we question a statement by a boss 
of the nuclear industry that “coal-fired 
powerplants constitute a substantial risk for 
the environment” ??? 
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Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● So: can proof-based verifications 
guarantee the  

“abscence of bugs” ?



An Architecture of a 
Program Verifier   (VCC)

● HOL-Boogie [Böhme, Wolff]
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The Reality:
● In reality, proof-based verifications 

make a lot of assumptions
(besides being costly in brain-power!)

● operational semantics should be faithfully executed
● complex memory-machine model 

consistent (VCC: 800 axioms)
● correctness of the vc generation

(for concurrent C with “ownership”, “locks”, ... ! ):
● correctness of the vc generator and prover
● abscence of an environment that manipulates

the underlying state.
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Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● Then: is program verification by proof 
at least always better than testing ?
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The Reality:
● Well, euh, strictly speaking not.

● in general, both techniques use mutually
independent assumptions, so ...

● ... nothing well-founded can be said in general !!! 
It all depends on the concrete assumptions 
and the concrete setting !

● there are actually cases in the literature where
bugs in “verified systems” (meaning: systems
verified by proof) were revealed by tests !
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Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● Can we always avoid testing ?
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Models of Systems for Tests 
·

System
(hard + software +
 environment)
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Models of Systems for Tests 
·
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Test-Oracle correct
function or behaviour 

System
(hard + software +
 environment)

a posteriori

run-time testing
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Models of Systems for Tests 
·

M
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d
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Model describing
function or behaviour 

System
(hard + software +
 environment)

a posteriori

run-time testing

a priori

run-time testing
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Verification by
Model-based Testing ... 

·
● ... can be done post-hoc; significant projects 

“reverse engineer” the model of a legacy system

● ... attempts to find bugs in specifications EARLY
(and can thus complement proof-based verification ...)

● ... can help system integration processes
in a partly unknown environment (“embedded systems”)

Nothing of this can be done by 
proof-based verification !
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Instead of a Motivation:
● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● Test and Proofs, are they actually adversaries?  

(Tony Hoare, POPL2012, says “meanwhile no”).
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Agenda
● MBT Tool HOL-TestGen (based on Isabelle/HOL)

and outline its method 

● Own Case Studies

● Demo

● Conclusion



LabEx DigiCosme, Axe                                                                               B.Wolff

HOL-TestGen by Example

● Step I in the TestGen - method:

● write Test Document containing HOL Definitions
‚

text{* We include the TestGen system and
start with a litte example *}

Triangle = Testing + 

‚ text{* The result type is defined by: *}
‚ datatype triangle = equilateral | scalene | 

                    isosceles   | error

‚ constdefs triangle :: "[nat,nat,nat] => bool"
‚ "triangle x y z == (0<x ∧ 0<y ∧ 0<z ∧    
‚                    (z<x+y) ∧ (x<y+z) ∧ (y<x+z))"

. . .
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HOL-TestGen by Example

● Step II in the TestGen - method:
● containing a Test Specification TS in HOL ... (ctd'd): 

. . .
testspec TS: 
“prog(x, y, z) = 
 if triangle x y z 
 then if x = y 
      then if y = z  then equilateral 
                     else isosceles 
      else if y = z  then isosceles 
                     else if x = z then isosceles 
                                   else scalene 
 else error”
. . .

● where prog is the program under test
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HOL-TestGen by Example

● Step III in the TestGen - method:

● fire generate cases tactic and get proof-state: 

. . . 

apply(gen_test_cases 3 1 simp: add_commute)
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HOL-TestGen by Example

● Step III in the TestGen - method:

● fire generate cases tactic and get proof-state: 

. . .

� ⟦0 < z; z < z + z �     ⟧ ⟹
    prog(z, z, z) = equilateral
   

� ⟦x ¯ z; 0 < x; 0 < z; z < x + z; x < z + z  ⟧ ⟹  
    prog(x, z, z) = isosceles 

� ⟦y ¯ z; z  y;¬z < z + y  ⟧ ⟹
    prog(z, y, z) = error
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A Step Back: Test-Theorem

● corresponding to a Test Theorem:

● consisting of 26 test cases C
1
 to C

26
 

(having the form of Horn clauses, where the
 premises are called constraints)

● consisting of 13 Explicit Test-Hypothesis THYP (H)

● establishing a formal link between Test and Proof

C
1
 ⟹ . . . C

26
 ⟹ THYP H

1
 ⟹ THYP H

13
  ⟹ TS   
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HOL-TestGen by Example

● Step V in the TestGen – method:

● fire generate cases tactic and get proof-state and 
produce test statements  (i.e. premises of the form):

. . . 
gen_test_data “Triangle”
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HOL-TestGen by Example

● Step V in the TestGen – method:

● fire generate cases tactic and get proof-state and 
produce test statements  (i.e. premises of the form):

. . . 
prog(3, 3, 3) = equilateral 
prog(4, 6, 0) = error
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HOL-TestGen by Example

● Step VI in the TestGen – method:

● Convert test-data automatically into a test driver.

. . . 
gen_test_script “Triangle”

In our case, this is an SML program that
fires the test-harness, which can be linked to
any .o file containing the program under test...
(so, the SUT must not be SML, rather C, Java, ...)
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Own Case Study: Red Black Trees
 Red-Black-Trees: Test Specification

 testspec :
 (redinv t  ∧  

   blackinv t) 

 f

(redinv (delete x t)  ∧     
 blackinv (delete x t))

 

 where delete is the program under test.
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Own Case Study: Firewalls + UPF
● Access Control Policies represent a key

element of security for Networks, Data-Bases, ...

● We modeled a “Unified Policy Framework” 
(UPF) and specialized our test-case generation
approach

● ...  used (internally) substantial interactive theorem 
proving for correctness of normalization
theorem.



Own Case Study: Firewalls + UPF

● UPF (A Theory in HOL / for HOL-TestGen)
· A Policy: A Decision Function 

datatype α decision = allow α | deny α 

types (α,β) policy = α  β decision    (* = α ⇀ ⇒ β option *) 
         notation  α ⟴ β = (α,β) policy

· Operators
definition  ∅  λ y. None≡

definition p(x ↦ t)  λ y. if y = x then A else p y≡

definition A  {x. y. x = allow y} , D  {x. y. x = deny y}≡ ≡∃ ∃

definition p(x+↦t)  p(x ≡ ↦ allow t)  p(x−↦t)  p(x ≡ ↦ deny t)

definition (*AllowAll*) Af  λ x. allow(f x),(*DenyAll*) Df  λ x. deny(f x)≡ ≡∀ ∀

…   domain / range restriction   S  p, p  S, override p◁ ▷ 1  p⨁ 2 ...
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Own Case Study: Firewalls + UPF

 DEMO ! 
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Conclusion: Test & Proof
● ... can never ever establish the absense of “Bugs” 

in a system! Never ever. Both of them.

● ... can, when combined, further increase 
confidence in verification results by
using mutually independent assumptions.

● ... can, when combined, offer new ways to
tackle abstraction and state space explosion.
(UPF Normalization Theorem)

● ... can share Tools and Tool development efforts.
(Parallelization, Interfaces, Counter-Example Gen.) 
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TestGen: Symbolic Computations
pre x f post (x, PUT x)

case-splitter 
(variables+types:  regularity hypothesis 
patterns: domain specific test rules)

case-solver 
(simplifier, SMT-solver, ...)                    

case-normalizer
(CNF + )                                                  

selection-former 
(inserts uniformity hypothesis)

k times ...
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Own Case Study: Red Black Trees
● Statistics:

348 test cases were generated, within 2 min.

● one Error in the SML library was  found, 
that makes  crucial violation against redblack-
invariants; makes lookup linear

● ... error not found within 12 years ...

● ... reproduced meanwhile by random test tool
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