HOL-Boogie —
An Interactive Prover-

Backend for the
Verifying C Compiler

Burkhart Wol ff

With help by: Wolfram Schulte, Rustan Leino,

Mike Barnett, Jan Smuts, Herman Venter, Michal Moskal, ...

Context (1)

* The VeriSoft Xt Project

* started 2007, 24 mio € budget, 3 years,
ca. 100 men-year work.

* several larger verification sub-projects

* Avionics, Car-Electronics
* Pike-OS Kernel (a real-time OS)
* Microsofts Hyper-V (a virtualization OS)

Context (2)
* Microsofts Hyper-V (a virtualization OS)

Root Partition Child Partition 1 "~ "y 7 Child Partition n

Hyper-V Aware Hyper-V Aware Hyper-\V Aware
Windows Server Windows Client Non-Windows OS
(Windows Server 2008) (Windows Vista) (Linux with MS/XenSource

Hypercall API Hypercall API Hypercall API

VMBuUs

Context (3)

* What is the Hyper-V Hypervisor ?
* an operating system
* manages processes ("guests”,"partitions”),
* memory,
* events and IPC's

* (but no real devices, that
is handled by the root partition)

Context (4)
* What is special with Hyper-V?

* in contrast to a standard OS,
which emulates linear (“logical”) memory
for its processes, it emulates
physical memory

l.e. an MMU

for its guests (using X86 - V Chipset)

Context (H)
* The Hyper-V Verification Project

* Motivation:
Tremendously complex, difficult to test.

* Relatively small:
50000 line of code in ANSII C (X86 - V)
and Assembler

* There have been formal models of processors
and virtual machines for a while
(INTEL's X86 (Forte), AMD's X86 (ACL 2)
JVM (Isabelle/HOL), VAMP (Isabelle/HOL), ...)

Context (6)
* The Hyper-V Verification Project

* Target: Correctness Proof. Prove that

an emulated X86 processor
(running one one core of X86-V)

behaves like

a standard X86 processor (modulo time).

Context (6)
* The Hyper-V Verification Project

obviously, a lot of new
verification technology
IS needed.

Motivation (1)

Automated Theorem Proving (ATP) has found its
“Killer-Application": Static Program-Analysis

e SAL-Annotations in MS Vista and MS Word |

* Boogie: Data-Invariant Checking

Interactive Theorem Proving (ITP): No Killer-App in
sight (people still hate to see proofs ...), but

* Verifications of complex algorithms, or even
mathematically challenging theorems, is S-o-1-A.

* Lots of Technology exists to get calculi right and
to get provers safely work together.

Motivation(2)

* Boogie:

... is a program-oriented specification method aiming at
“deeper” algorithmic verification (as, e.g., SAL).

.. offers an extremely attractive
"AnalyzedFix" cycle.

Still, failures of proof attempts can be difficult o
understand: Is it the prover? The program? The spec?

Plan of the Talk

Scenario I: HOL-Boogie as Interactive Prover of
Boogie VC's, with an "Analyseé&Fix" based on ITP. (%70)

Challenges and Answers for ITP in a static (%20)
program analysis application

Scenario IT: HOL-Boogie in C Verification (7%10)

 Workflow:

Scenario I

prelude

Scenario I

* The Problem: Dijkstra's Shortest Path Algorithm
Data:

type Vertex;

const Graph: [Vertex, Vertex] int;

const AllVertices: [Vertex] bool;

axiom (forall x: Vertex :: AllVertices[x]);

axiom (forall x: Vertex, y: Vertex:: x 1=y ==> 0 <Graph[x,y]);
axiom (forall x: Vertex, y: Vertex:: x ==y ==> Graph|[x,y] == 0);
const Infinity: int;

axiom 0 < Infinity;

var Shortest: [Vertex, Vertex] int;

Scenario I

* The Problem: Dijkstra's Shortest Path Algorithm
Toplevel-Specification:

procedure Dijkstra();

modifies Shortest
ensures (forall x:Vertex::AllVertices[x]==>Shortest[x,x] == 0);

ensures (forall x: Vertex, y: Vertex, z: Vertex ::
AllVertices[x] && AllVertices[y] && AllVertices[z] ==>
Shortest[x,z] <= Shortest[x,y] + Graph|y,z]);
ensures (forall x: Vertex, z: Vertex ::
AllVertices[x] && AllVertices[z] ==>
Shortest[x,z] <= Graph[x,z]);

Scenario I

* The Problem: Dijkstra's Shortest Path Algorithm
Toplevel-Specification:

procedure Dijkstra();

modifies Shortest
ensures (forall x:Vertex::AllVertices[x]==>Shortest[x,x] == 0);

ensures (forall x: Vertex, y: Vertex, z: Vertex ::
AllVertices[x] && AllVertices[y] && AllVertices[z] ==>
Shortest[x,z] <= Shortest[x,y] + Graph|y,z]);
ensures (forall x: Vertex, z: Vertex ::
AllVertices[x] && AllVertices[z] ==>
Shortest[x,z] <= Graph[x,z]);

Scenario I

* The Problem: Dijkstra's Shortest Path Algorithm
Implementation:

eniry \

H Loophead havoc Shortest;
E— assume (forall x: Vertex, y: Vertex ::
Loopbody AllVertices[x] && AllVertices|y]
==> x==y ==> Shortest[x,y] ==0);
S— assume (forall x: Vertex, y: Vertex ::
[nnerLoopHead AllVertices[x] && AllVertices[y]
v ==>x |=y ==> Shortest[Xx,y] ==
InnerLoopBody Infinity);
\/
- Donelnner . SourceNotVisited := AllVertices;

> Done

Scenario I

* The Problem: Dijkstra's Shortest Path Algorithm
Implementation:

eniry \

assert (forall x: Vertex ::

H Loophead SourceNotVisited[x] ==> AllVertices[x]);
E—
Loopbody
— assert (forall x: Vertex :: AllVertices[x] ==>
InnerLOOpHead Shortest[x,x] == 0);
 / assert (forall x: Vertex, y: Vertex, z: Vertex ::
InnerLoopBody AllVertices[x] && AllVertices[y] ==>
v SourceNotVisited[X] ||
Shortest[x,z] <=
- Donelnner .

Shortest[x,y] + Graph[y,z]);
. Done \ J

Scenario I

* The Problem: Dijkstra's Shortest Path Algorithm
Implementation:

entry
\
. Loophead -
—

Loopbody
< -

InnerLoopHead
y

InnerLoopBody
y

- Donelnner .

. Done \

Scenario I

* Verification with HOL-Boogie (Attempt I)

Generating .b2i-file:
/cygdrive/c/boogie/Binaries/Boogie /prover:isabelle Dijkstra.bpl

and get it under /cygdrive/c/Dijkstra.1.b2i.

And then start Isabelle under ProofGeneral:

DEMO

Scenario I

* Verification with HOL-Boogie (Attempt I)
Attempt 1 stuck at:

[...;

] = 0 = Shortest@3(x,y) + Graph(y,z)

The Problem occurs when establishing the entry-condition
from Donelnner to Loophead.

* Solution: Strengthen the Invariants to 0 = Shortest(x,y)

mailto:Shortest@3

Scenario I

* The Problem: Dijkstra's Shortest Path Algorithm
Implementation:

eniry \

assert (forall x: Vertex ::

H Loophead SourceNotVisited[x] ==> AllVertices[x]);
E—
Loopbody
— assert (forall x: Vertex :: AllVertices[x] ==>
InnerLOOpHead Shortest[x,x] == 0);
 / assert (forall x: Vertex, y: Vertex, z: Vertex ::
InnerLoopBody AllVertices[x] && AllVertices[y] ==>
v SourceNotVisited[X] ||
Shortest[x,z] <=
- Donelnner .

Shortest[x,y] + Graph[y,z]);
. Done \ J

Scenario I

* The Problem: Dijkstra's Shortest Path Algorithm
Implementation:

entry \
% assert (forall x: Vertex ::
H LOOphead SourceNotVisited[x] ==> AllVertices[x]);
— assert (forall x: Vertex, y: Vertex::
Loopbody AllVertices[x] && AllVertices[y] ==>
E— 0 <= Shortest[x,y]);
assert (forall x: Vertex :: AllVertices[x] ==>
InnerLOOpHead Shortest[x,x] == 0);
 / assert (forall x: Vertex, y: Vertex, z: Vertex ::
InnerLoopBody AllVertices[x] && AllVertices[y] e ==>
v SourceNotVisited[X] ||
Shortest[x,z] <=
- Donelnner .

Shortest[x,y] + Graph[y,z]);
. Done \ /

Scenario I

* Results I:
* Attempt IT (with strengthened Invariant) succeeds

* Proof takes 5 min. in interactive mode.

* Proof deliberately low-level; anyone with
medium expertise in ITP should be able to do this!

* Z3 does still not find the proof.
* Proof development took 1,5 working days

* Analternative "classic” ATP verification by improvement
of DijkstraN was abandoned by [Leino&al] after 1,5 days.

Challenges: ITP for PA

* Techniques specific to ITP in Program Analysis

* Tactics taking the structure of wp-generated
formulas into acount

* Positional and Structural Labelling Techniques
* Integration of SMT solvers

* Integration of techniques to
make prover instrumentations transparent
through different provers ...

Scenario I : Tactics

* Observation of wp-generated formulas:
Why? ... The "skeleton” is a deterministic proof.

B Algorithm induced skeleton] Automated Proofs
B Interfacing interactive proofs

Scenario I : Labelling

Positional labels “this assertion is from line 55 ..."

block_at Line_25_Col_3 True
assert_at Line_55_Col_4 (...)

(Technigue described in Leino, Millstein, and Saxe: Generating

error traces from verificationcondition counterexamples. SCP,
55-1-3, 2005)

Structural Labels "this assertion holds at entry of loop A"

(not much used so far, but better for repeated

Analyse&Fix.)

Scenario I: Instrumentation

Any prover has a life of its own.
Rules must be massaged and instrumented to tell
an automated prover HOW a ruleset has to be used.

Attributation of Signature elements:
axiom {prover{isabelle:builtin”add_commute™}} (...)

Prover instrumentation:
axiom {prover{isabelle:intro!}} (...)
axiom {:ignore "bvDefSem"} (forall x:int ::
{ $sign_extend.1.32($_int.to.bv32(x)[1:0]) }
-$_bv64.t0.int(1bve4) <= x && x < $_bv64.t0.int(1bve4)
==> $sign_extend.1.32($_int.to.bv32(x)[1:0]) ==
$ int.to.bv32(x)):

Scenario 11 : Verifying C Programs

* Workflow: One further redirection step. And
a complex memory/machine model.

—— 7 Z3 7(Z3
‘H Boogie
C
com
piler -
axiomatization of the
“c virtual machine” (cvm)
thy
VCC

Scenario II
* Example:

longint 1 = 0;

void incr ()
requires i1 < maxint
ensures 1 <= maxint

{
}

(i++);

Scenario II
Example:

const 1 ptr :: ptr

procedure incr();

modifies mem

requires ($clt.u8($ld.u2(mem,i ptr), maxint))

ensures (Scle.u8($1ld.u2(mem,1 ptr), maxint) &é&
modifiesOnly(mkSet (1 ptr)))

implementation incr(){
assumes(Sclt.u8($1ld.u2(mem, 1 ptr), maxint))

mem := $st.i8(mem, S$add.i8($1d.i8(mem, i ptr),1l))

assert(Scle.u8($1d.u2(mem, i ptr), maxint) &&
modifiesOnly(mkSet (1 ptr)))
}

Scenario 11

* VCC or Spec# require:

considerably large,

axiomatic background theories on
* memory models

* machine operations (X86 VT)

* specialized instrumentations on
the prover side for each memory/machine
model (actually, there is VCC1 and VCC?2)

Scenario 11

* Task:

* HOL-Boogie as a generator of a consistent prelude, the

"C-Virtual Machine”.

* Motivation: Providing a comprehensive Axiomatization

of logics and its environment (State, Bitvectors, CVM)

* for checking the consistency

* for prover integration

Conclusion

ITP techniques can provide an effective means
to algorithmic verification in Boogie although
the "AnalyzedFix"-cycle is substantially slower

ITP techniques can provide explicit, comprehensive
and consistent preludes for complex logical contexts.
This helps to increase confidence into the approach.

ITP's are still unavoidable in "real” Code-Analysis
if algorithms, recursive data-structures, or deep
arithmetic reasoning is involved.

= Lots of Potential !l

We proudly announce ...

Journal Paper on the nitty-gritty details:

Sascha Bohme, Michal Moskal, Wolfram Schulte and
Burkhart Wolff: HOL-Boogie - An Interactive Prover-
Backend for the Verified C Compiler. Accepted (with minor
revisions) for the Journal of Automated Reasoning (JAR),
Springer, 2009.

see: http://www.Iri.fr/~wolff/publications_year.html

http://www.springerlink.com/content/100280/?p=c9fdb5a5078c4ace8d26805511ea13c2&pi=0

Scenario 11

* Let's doit: (it will take some time Il)

DEMO

