

HOL-Boogie —
An Interactive Prover-

Backend for the
Verifying C Compiler

 Burkhart Wolff

 With help by: Wolfram Schulte, Rustan Leino,

Mike Barnett, Jan Smuts, Herman Venter, Michal Moskal, ...

Context (1)
● The VeriSoft Xt Project

● started 2007, 24 mio € budget, 3 years,
ca. 100 men-year work.

● several larger verification sub-projects
● Avionics, Car-Electronics
● Pike-OS Kernel (a real-time OS)
● Microsofts Hyper-V (a virtualization OS)

Context (2)
● Microsofts Hyper-V (a virtualization OS)

Context (3)
● What is the Hyper-V Hypervisor ?

● an operating system
● manages processes (“guests”,“partitions”),
● memory,
● events and IPC's
● (but no real devices, that

is handled by the root partition)

Context (4)
● What is special with Hyper-V?

● in contrast to a standard OS,
which emulates linear (“logical”) memory
for its processes, it emulates
physical memory

i.e. an MMU

for its guests (using X86 – V Chipset)

Context (5)
● The Hyper-V Verification Project

● Motivation:
Tremendously complex, difficult to test.

● Relatively small:
50000 line of code in ANSII C (X86 - V)
and Assembler

● There have been formal models of processors
and virtual machines for a while
(INTEL's X86 (Forte), AMD's X86 (ACL 2)
 JVM (Isabelle/HOL), VAMP (Isabelle/HOL), ...)

Context (6)
● The Hyper-V Verification Project

● Target: Correctness Proof. Prove that

an emulated X86 processor
(running one one core of X86-V)

behaves like

a standard X86 processor (modulo time).

Context (6)
● The Hyper-V Verification Project

obviously, a lot of new
verification technology
is needed.

Motivation (1)
● Automated Theorem Proving (ATP) has found its

“Killer-Application”: Static Program-Analysis
● SAL-Annotations in MS Vista and MS Word !
● Boogie: Data-Invariant Checking

● Interactive Theorem Proving (ITP): No Killer-App in
sight (people still hate to see proofs ...), but

● Verifications of complex algorithms, or even
mathematically challenging theorems, is S-o-t-A.

● Lots of Technology exists to get calculi right and
to get provers safely work together.

Motivation(2)
● Boogie:

... is a program-oriented specification method aiming at
“deeper” algorithmic verification (as, e.g., SAL).

... offers an extremely attractive
 “Analyze&Fix” cycle.

Still, failures of proof attempts can be difficult to
understand: Is it the prover? The program? The spec?

Plan of the Talk
● Scenario I: HOL-Boogie as Interactive Prover of

Boogie VC's, with an “Analyse&Fix” based on ITP. (%70)

● Challenges and Answers for ITP in a static (%20)
program analysis application

● Scenario II: HOL-Boogie in C Verification (%10)

Scenario I

● Workflow:

.b2iBoogie

.bpl

.bpl HOL-Boogie

.thy
prelude

Z3

Scenario I
● The Problem: Dijkstra's Shortest Path Algorithm

Data:

 type Vertex;
 const Graph: [Vertex, Vertex] int;
 const AllVertices: [Vertex] bool;
 axiom (forall x: Vertex :: AllVertices[x]);
 axiom (forall x: Vertex, y: Vertex:: x != y ==> 0 <Graph[x,y]);
 axiom (forall x: Vertex, y: Vertex:: x == y ==> Graph[x,y] == 0);
 const Infinity: int;
 axiom 0 < Infinity;
 var Shortest: [Vertex, Vertex] int;

Scenario I
● The Problem: Dijkstra's Shortest Path Algorithm

Toplevel-Specification:

 procedure Dijkstra();
 modifies Shortest
 ensures (forall x:Vertex::AllVertices[x]==>Shortest[x,x] == 0);
 ensures (forall x: Vertex, y: Vertex, z: Vertex ::
 AllVertices[x] && AllVertices[y] && AllVertices[z] ==>
 Shortest[x,z] <= Shortest[x,y] + Graph[y,z]);
 ensures (forall x: Vertex, z: Vertex ::
 AllVertices[x] && AllVertices[z] ==>
 Shortest[x,z] <= Graph[x,z]);

 . . .

Scenario I
● The Problem: Dijkstra's Shortest Path Algorithm

Toplevel-Specification:

 procedure Dijkstra();
 modifies Shortest
 ensures (forall x:Vertex::AllVertices[x]==>Shortest[x,x] == 0);
 ensures (forall x: Vertex, y: Vertex, z: Vertex ::
 AllVertices[x] && AllVertices[y] && AllVertices[z] ==>
 Shortest[x,z] <= Shortest[x,y] + Graph[y,z]);
 ensures (forall x: Vertex, z: Vertex ::
 AllVertices[x] && AllVertices[z] ==>
 Shortest[x,z] <= Graph[x,z]);

 . . .

Scenario I
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

 entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

 havoc Shortest;
 assume (forall x: Vertex, y: Vertex ::
 AllVertices[x] && AllVertices[y]
 ==> x==y ==> Shortest[x,y] ==0);
 assume (forall x: Vertex, y: Vertex ::
 AllVertices[x] && AllVertices[y]
 ==>x != y ==> Shortest[x,y] ==
 Infinity);

 SourceNotVisited := AllVertices;

Scenario I
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

 entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

assert (forall x: Vertex ::
 SourceNotVisited[x] ==> AllVertices[x]);

assert (forall x: Vertex :: AllVertices[x] ==>
 Shortest[x,x] == 0);
assert (forall x: Vertex, y: Vertex, z: Vertex ::
 AllVertices[x] && AllVertices[y] ==>
 SourceNotVisited[x] ||
 Shortest[x,z] <=
 Shortest[x,y] + Graph[y,z]);
 ...

Scenario I
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

 entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

 . . .

Scenario I
● Verification with HOL-Boogie (Attempt I)

Generating .b2i-file:

/cygdrive/c/boogie/Binaries/Boogie /prover:isabelle Dijkstra.bpl

and get it under /cygdrive/c/Dijkstra.1.b2i.

And then start Isabelle under ProofGeneral:

 DEMO

Scenario I
● Verification with HOL-Boogie (Attempt I)

Attempt 1 stuck at:

[| ... ;
 ... ;
|] ⇒ 0 ≦ Shortest@3(x,y) + Graph(y,z)

The Problem occurs when establishing the entry-condition
from DoneInner to Loophead.

● Solution: Strengthen the Invariants to 0 ≦ Shortest(x,y)

mailto:Shortest@3

Scenario I
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

 entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

assert (forall x: Vertex ::
 SourceNotVisited[x] ==> AllVertices[x]);

assert (forall x: Vertex :: AllVertices[x] ==>
 Shortest[x,x] == 0);
assert (forall x: Vertex, y: Vertex, z: Vertex ::
 AllVertices[x] && AllVertices[y] ==>
 SourceNotVisited[x] ||
 Shortest[x,z] <=
 Shortest[x,y] + Graph[y,z]);
 ...

Scenario I
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

 entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

assert (forall x: Vertex ::
 SourceNotVisited[x] ==> AllVertices[x]);
assert (forall x: Vertex, y: Vertex::
 AllVertices[x] && AllVertices[y] ==>
 0 <= Shortest[x,y]);
assert (forall x: Vertex :: AllVertices[x] ==>
 Shortest[x,x] == 0);
assert (forall x: Vertex, y: Vertex, z: Vertex ::
 AllVertices[x] && AllVertices[y] ==>
 SourceNotVisited[x] ||
 Shortest[x,z] <=
 Shortest[x,y] + Graph[y,z]);
 ...

Scenario I
● Results I:

● Attempt II (with strengthened Invariant) succeeds
● Proof takes 5 min. in interactive mode.
● Proof deliberately low-level; anyone with

medium expertise in ITP should be able to do this!
● Z3 does still not find the proof.
● Proof development took 1,5 working days
● An alternative “classic” ATP verification by improvement

of DijkstraN was abandoned by [Leino&al] after 1,5 days.

Challenges: ITP for PA
● Techniques specific to ITP in Program Analysis

● Tactics taking the structure of wp-generated
formulas into acount

● Positional and Structural Labelling Techniques
● Integration of SMT solvers
● Integration of techniques to

make prover instrumentations transparent
through different provers ...

Scenario I : Tactics
● Observation of wp-generated formulas:

Why? ... The “skeleton” is a deterministic proof.

Automated ProofsAlgorithm induced skeleton
Interfacing interactive proofs

Scenario I : Labelling
● Positional labels “this assertion is from line 55 ...”

 block_at Line_25_Col_3 True
 assert_at Line_55_Col_4 (...)

(Technique described in Leino, Millstein, and Saxe: Generating
error traces from verificationcondition counterexamples. SCP,
55-1-3, 2005)

● Structural Labels “this assertion holds at entry of loop A”

...

(not much used so far, but better for repeated

Analyse&Fix.)

Scenario I: Instrumentation
● Any prover has a life of its own.

Rules must be massaged and instrumented to tell
an automated prover HOW a ruleset has to be used.

● Attributation of Signature elements:
axiom {prover:{isabelle:builtin”add_commute”}} (...)

● Prover instrumentation:
axiom {prover:{isabelle:intro!}} (...)
axiom {:ignore "bvDefSem"} (forall x:int ::
{ $sign_extend.1.32($_int.to.bv32(x)[1:0]) }
 -$_bv64.to.int(1bv64) <= x && x < $_bv64.to.int(1bv64)
 ==> $sign_extend.1.32($_int.to.bv32(x)[1:0]) ==

$_int.to.bv32(x));

Scenario II : Verifying C Programs

HOL-Boogie

.thy

VCC

Boogie

● Workflow: One further redirection step. And
 a complex memory/machine model.

.bpl

.bpl

axiomatization of the
“c virtual machine” (cvm)

.b2i

C
com
piler

Z3 Z3

Scenario II
● Example:

longint i = 0;

void incr()
requires i < maxint
ensures i <= maxint
{
 (i++);
}

Scenario II
● Example:

const i_ptr :: ptr

procedure incr();
modifies mem
requires ($clt.u8($ld.u2(mem,i_ptr), maxint))
ensures ($cle.u8($ld.u2(mem,i_ptr), maxint) &&
 modifiesOnly(mkSet(i_ptr)))

implementation incr(){
assumes($clt.u8($ld.u2(mem, i_ptr), maxint))

mem := $st.i8(mem, $add.i8($ld.i8(mem, i_ptr),1))

assert($cle.u8($ld.u2(mem, i_ptr), maxint) &&
 modifiesOnly(mkSet(i_ptr)))
}

Scenario II
● VCC or Spec# require:

considerably large,
axiomatic background theories on
● memory models
● machine operations (X86 VT)
● specialized instrumentations on

the prover side for each memory/machine
model (actually, there is VCC1 and VCC2)

Scenario II
● Task:

● HOL-Boogie as a generator of a consistent prelude, the

“C-Virtual Machine”.

● Motivation: Providing a comprehensive Axiomatization

of logics and its environment (State, Bitvectors, CVM)

● for checking the consistency

● for prover integration

Conclusion
● ITP techniques can provide an effective means

to algorithmic verification in Boogie although
the “Analyze&Fix”-cycle is substantially slower

● ITP techniques can provide explicit, comprehensive
and consistent preludes for complex logical contexts.
This helps to increase confidence into the approach.

● ITP's are still unavoidable in “real” Code-Analysis
if algorithms, recursive data-structures, or deep
arithmetic reasoning is involved.

 ⇛ Lots of Potential !!!

We proudly announce ...
● Journal Paper on the nitty-gritty details:

Sascha Böhme, Michal Moskal, Wolfram Schulte and
Burkhart Wolff: HOL-Boogie - An Interactive Prover-
Backend for the Verified C Compiler. Accepted (with minor
revisions) for the Journal of Automated Reasoning (JAR),
Springer, 2009.

see: http://www.lri.fr/~wolff/publications_year.html

http://www.springerlink.com/content/100280/?p=c9fdb5a5078c4ace8d26805511ea13c2&pi=0

Scenario II
● Let's do it: (it will take some time !!!)

 DEMO

