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Abstract
GÂ We present a generic modular policy modelling framework and instantiate it with a 

substantial case study for model-based testing of some key security mechanisms 
of the NPfIT. NPfIT, “the National Program for IT” is a very large- scale 
development project  aiming to modernise the IT infrastructure in the English 
health care system (NHS). Consisting of heterogeneous and distributed code, it is 
an ideal target for model-based testing techniques of a very large system 
exhibiting critical security features. We will model the four information 
governance principles, comprising a role-based access control model, as well as 
policy rules governing  the concepts of patient consent, sealed envelopes and 
legitimate relationship. The model is given in higher-order logic (HOL) and 
processed together with suitable test-specifications in the  HOL-TestGen system, 
that generates semi-automatically test sequences according to them. 

Particular emphasis is put on the modular description of security policies and their 

generic combination and its consequences for model-based testing.
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Overview
● NPfIT
● NPfIT formalized in UPF (formalized in HOL) 
● System: HOL-TestGen
● First Results and Experiences



National Program for IT (NPfIT) 
● Large Case-Study together with British Telecom
● Test-Goal: NHS patient record access control

mechanism
● Large Distributed, Heterogeneous System
● Legally required Access Control Policy

(practically mostly enforced on the application level)

 
                                           SPINE

NHS-London NHS-Midlands ....

AP1 AP2 AP3
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Case-Study: NPfIT
● Challenges:

● access control rules for patient-identifiable information are complex and 
reflect the trade-off between patient confidentiality, usability, functional, 
and legislative constraints.

● Traditional discretionary and mandatory access control and RBAC are 
insufficiently expressive to capture complex policies such as Legitimate 
Relationships, Sealed Envelopes or Patient Consent Management.

● access rules of such a large system comprise not only elementary rules of 
data-access, but also access to security policies themselves enabling policy 
management. The latter is conventionally modeled in ABAC [6–8] and 
administrative RBAC [9, 10] models; A uniform modelling framework must be 
able to accommodate this.

● The requirements are mandated by laws, official guidelines and ethical 
positions (e. g. [11, 12]) that are prone to change.
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Case-Study: NPfIT
● Different “Information Gouvernance Principles” 

(= Policies):
● Role-Based Access Control (RBAC): NPfIT uses administrative RBAC [9] to 
control who can access what system functionality. Each user is assigned 
one or more User Role Profile (URP). Each URP permits the user to 
perform several Activities.

● Legitimate Relationship (LR): A user is only allowed to access the data of 
patients in whose care he is actually involved. Users are assigned to 
hierarchically ordered workgroups that reflect the organisational 
structure of a workplace.

● Patient Consent (PC): Patients can opt out in having a Summary Care 
Record (SCR) at all, or to control uploads of data into the SCR. This 
requires additional mechanisms to manage consent.

● Sealed Envelope (SE): The sealing concept is used to hide parts of an SCR 
from users. Kinds of seals: seal, seal and lock, clinician seal.
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Modeling Framework: 
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
· A Policy: A Decision Function 

(Modeling a “Policy Enforcement Point” in a System)

datatype α decision = allow α | deny α
 

types (α,β) policy = α  β decision    (* = α ⇀ ⇒ β option *) 

notation  α ⇛ β = (α,β) policy
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Modeling Framework: 
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
● Policy Constructors

definition  ∅ ≡ λ y. None     (*  :: ∅ α ⇛ β *)

definition p(x+↦t)  p(x ≡  Some(↦ allow t))      (* p :: α ⇛ β *)
    p(x−↦t)  p(x ≡  Some(↦ deny t))      (* where  p(x  ↦ t)  ≡

                                                                                        λ y. if y = x then A else p y *)

definition (*AllowAll :: "(α  β)  (α ⇀ ⇒ ⇛ β)" *) 

   ∀A x. pf(x)  (λ x. case pf x of  Some y  Some(allow(y))≡ ⇒
                                  | None  None)⇒

  (*DenyAll :: "(α  β)  (α ⇀ ⇒ ⇛ β)"*) 
  ∀D x. pf(x)  (λ x. case pf x of   Some y  Some(allow(y))≡ ⇒

                                 | None  None)⇒
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Modeling Framework: 
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
– Domain, Range and Restictions on Policies (Z-like)

definition A  {x. y. x = allow y},  D  {x. y. x = deny y}≡ ∃ ≡ ∃

definition dom:: α  β ⇀ ⇒ α set
where      dom f  {x. f x ≡ ≠ None}

definition ran:: α  β ⇀ ⇒ β set   ...

definition  _ r _ :: α set ⇒ α  β   α  β⇀ ⇒ ⇀  
where     S r p  ≡ (λ x. if x  S then p x else none)∈  (* domain restriction *)

definition _ t _  :: α  β ⇀ ⇒ α set ⇒ α  β⇀  ... (* range restriction *)

definition  _  _ :: ⨁ α  β ⇀ ⇒  α  β⇀    α  β ...⇒ ⇀ (* first fit override  *)  
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Example: Firewalls

● Firewall Policies in UPF
– Data: 

ip-address =  int × int × int × int
ip-packet   =  ip-address × protocol × content × ip-

address

– Firewall - Policies:

policy : ip-packet  ⇛ ip-packet

… this covers also Network Adress Translations 
(NAT's)
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Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition  me-ftp :: ip-packet ⇛ ip-packet 
where      me-ftp ≡   (∅ (192,22,14,76),ftp,d,(192,22,14,76)
                                   +↦(192,22,14,76),ftp,d,(192,22,14,76)) 
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Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition  me-ftp :: ip-packet ⇛ ip-packet 
where      me-ftp ≡   (∅ (192,22,14,76),ftp,d,(192,22,14,76)
                                   +↦(192,22,14,76),ftp,d,(192,22,14,76)) 

– Combined Policies:

definition  me-none-else::  ip-packet ⇛ ip-packet 

where      me-none-else  ≡ me-ftp   ⨁ ∀D x. x
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Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition  me-ftp :: ip-packet ⇛ ip-packet 
where      me-ftp ≡   (∅ (192,22,14,76),ftp,d,(192,22,14,76)
                                   +↦(192,22,14,76),ftp,d,(192,22,14,76)) 

– Combined Policies:

definition  me-none-else::  ip-packet ⇛ ip-packet 

where      me-none-else ≡ me-ftp   ⨁ ∀D x. x



11/25/10 B. Wolff -Security Testing NPfIT 14

Example: RBAC

● RBAC Policies in UPF
– Domain: UR = users × role

    RP = role × permission
– 2-Policies: 

UserTab :: UR ⇛ unit, 
PermTab:: permission  role⇒   ⇛ unit
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Example: RBAC

● RBAC Policies in UPF
– Domain: UR = users × role

    RP = role × permission
– 2-Policies: 

UserTab :: UR ⇛ unit, 
PermTab:: permission  role⇒   ⇛ unit

datatype  users  = …
datatype  roles   = …
datatype  permissions   = …

definition rbac  … RBAC (perm) = UserTab  o D∨  PermTab(perm)
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Example: RBAC

● RBAC Policies in UPF
– Domain: UR = users × role

    RP = role × permission
– 2-Policies: 

UserTab :: UR ⇛ unit, 
PermTab:: permission  role⇒   ⇛ unit

datatype  users  = …
datatype  roles   = …
datatype  permissions   = …

definition rbac  … RBAC (perm) = UserTab  o D∨  PermTab(perm)

where o D∨  is one of the 4 policy sequential compositions
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More on UPF

● Transition Policies
– Transition Policies: Policies involving state

 α×σ ⇛ β×σ (input α, output β)

– Higher-order Policies (Policies transforming policies)

   α×(γ⇛δ) ⇛ β×(γ⇛δ)

– Thus, ARBAC policies (policies describing who and how
(1-order) policies may be modified) can be modelled in UPF
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More on UPF
● Parallel Composition of Policies:

– Idea: Considering policies as “transitions” in an automaton
and putting them “in parallel” similar to automata 
composition.

– Essentially 4 possibilities:

definition prod_orA ::"['α 'β, 'γ 'δ]  ('α×'γ  'β×'δ)" (_ )↦ ↦ ⇒ ↦
where "p1 ⨂ A∨  p2   (λ(x,y). (case p1 x of ≡

Some(allow d1)   (case p2 y of ⇒
                                   Some(allow d2)  Some(allow(d1,d2))⇒
                                 | Some(deny d2)   Some(allow(d1,d2))⇒
                                 | None  None) ⇒
                   | Some(deny d1) (case p2 y of⇒
                                   Some(allow d2)  Some(allow(d1,d2)) ⇒
                                 | Some(deny d2)   Some(deny (d1,d2)) ⇒
                                 | None  None)⇒
                   | None  None))⇒
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Principal Use of UPF for NPfIT

● Parallel Composition of 4 Policies + Functional: 

(norm_beh, excep_beh) ∇

(legitimate_relation ⨂ A∨  
 

   patients_consent  ⨂ A∨  

   sealed_envelopes  ⨂ A∨   

   rbac)  
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NPfIT in UPF

● Test - Specifications:
– Embedding of Transition Policies in State-Exception 

Monads:

    definition policy2MON :: (ι×σ ⇛ o×σ)  ⇒ ι  σ ⇒  ⇀ (o ⤫ σ) 
 where policy2MON p = 

(λ ι σ. case p (ι,σ) of

  Some(allow(o,σ ʼ))  ⇒ Some(allow o, σʼ)

                          | Some(deny(o, σʼ))  ⇒ Some(deny o, σʼ)

| None  None)⇒
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NPfIT in UPF

● Test - Specifications:
– Embedding of Transition Policies in State-Exception Monads:

    definition policy2MON :: (ι×σ ⇛ o×σ)   ⇒ ι  (o decision,σ)MON⇒ SE

 where policy2MON p = 
(λ ι σ. case p (ι,σ) of

  Some(allow(o,σ ʼ))  ⇒ Some(allow o, σʼ)

                          | Some(deny(o, σʼ))  ⇒ Some(deny o, σʼ)

| None  None)⇒
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Modeling Framework: 
Unified Policy Framework (UPF)

● State-Exception Monads(f.Test-Sequences in 
HOL)

 State-Exception Monads:
    type (o,σ)MONSE = σ ⇀ (o, σ)

      definition bind ::  (o,σ)MONSE  ⇒  (o ⇒ (o,σ)MONSE)   ⇒  (o,σ)MONSE   (“ _ ;  _  _”)←
     where …

      definition unit ::  (o ⇒ bool) ⇒ (o,σ)MONSE)                  (“return _ ”)
 where …

 Computation Sequences, Valid Computation Sequences, 
Valid mbind-Sequences, Valid mbind-Sequences with pre-condition:

PUT(i1) ; o1  PUT(i← 2); … ; on  PUT(i← n) ; result(post o1 … on) 
σ0  ⊨  PUT(i1) ; o1  PUT(i← 2); … ; on  PUT(i← n) ; result(post o1 … on) 
σ0  ⊨  oS  mbind i← S PUT ;  result(post oS) 
pre iS    ⇒     σ0 ⊨ oS  mbind i← S PUT;  result(post oS)
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NPfIT in UPF

● Example for NPfIT:

(General Pattern, formalizing an informal 
requirement) :

pre iS    ⟹     σ0 ⊨ oS  mbind PUT (i← S);  result(post oS) 
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NPfIT in UPF

● Example for NPfIT:

(General Pattern, formalizing an informal 
requirement) :

⟦users  iS   {urp1_alice, urp2_alice, urp_john, urp_bob}; ⊆
  σ0  ⊨ os mbind  i← S  RBAC_Mon; return (os = X)⟧ 

    ⟹ σ0 ⊨ os mbind i← S PUT; return (os = X)

   



Our System: HOL-TestGen is ...
● ... based on HOL (Higher-order Logic): 

● “Functional Programming Language with Quantifiers” 
● plus definitional libraries on Sets, Lists, . . . 
● can be used meta-language for HoareCalculi, Z, CSP. . . 

● ... implemented on top of Isabelle
● an interactive prover implementing HOL
● the test-engineer must decide over, abstraction level, 

split rules, breadth and depth of data structure exploration . . . 
● providing automated and interactive

constraint-resolution techniques
● interface: ProofGeneral

● ... by thy way, a verified test-tool



HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain 
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HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain 
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of  I/O relation of the form

        C
1
(x) ⟹ . . . C

n
(x)  ⟹ post x (PUT x)

● Test-Data-Selection
● constraint solver gen_test_data
● finds x satisfying C

i
(x) 

● Test-Driver Generation
● automatically compiled, drives external program

● Test Execution, Test-Documentation



TestGen: Symbolic Computations
pre x f post (x, PUT x)

case-splitter 
(variables+types:  regularity hypothesis 
patterns: domain specific test rules)

case-solver 
(simplifier, SMT-solver, ...)                    

case-normalizer
(CNF + )                                                  

selection-former 
(inserts uniformity hypothesis)

k times ...
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Conclusion
● HOL-TestGen used for NPfIT 

was success wrt:
 superior modeling techniques
 substantial conservative libraries
 standardized interfaces to tactic

and automatic proof
 code generation
 a programming interface and genericity in design

... offering lot of machinery not worth to reinvent.
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Conclusion
● HOL-TestGen used for NPfIT 

was not successful as a project:
 we did not manage to find partners in the 

NPfIT Consortium that were actually using 
our test data…

 public and private awareness of security
problems apparently VERY LOW

 exploration of data space not (yet) very deep
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