
Model-based Security
Testing of a Health-Care

System Architecture:

A Case Study
 Achim Brucker (SAP), Lukas Brügger (ETH),

Paul Kearney(BT) and Burkhart Wolff*
*Université Paris-Sud, Laboratoire de Recherche Informatique (LRI)

11/25/10 B. Wolff -Security Testing NPfIT 2

Abstract
GÂ We present a generic modular policy modelling framework and instantiate it with a

substantial case study for model-based testing of some key security mechanisms
of the NPfIT. NPfIT, “the National Program for IT” is a very large- scale
development project aiming to modernise the IT infrastructure in the English
health care system (NHS). Consisting of heterogeneous and distributed code, it is
an ideal target for model-based testing techniques of a very large system
exhibiting critical security features. We will model the four information
governance principles, comprising a role-based access control model, as well as
policy rules governing the concepts of patient consent, sealed envelopes and
legitimate relationship. The model is given in higher-order logic (HOL) and
processed together with suitable test-specifications in the HOL-TestGen system,
that generates semi-automatically test sequences according to them.

Particular emphasis is put on the modular description of security policies and their

generic combination and its consequences for model-based testing.

11/25/10 B. Wolff -Security Testing NPfIT 3

Overview
● NPfIT
● NPfIT formalized in UPF (formalized in HOL)
● System: HOL-TestGen
● First Results and Experiences

National Program for IT (NPfIT)
● Large Case-Study together with British Telecom
● Test-Goal: NHS patient record access control

mechanism
● Large Distributed, Heterogeneous System
● Legally required Access Control Policy

(practically mostly enforced on the application level)

 SPINE

NHS-London NHS-Midlands

AP1 AP2 AP3

11/25/10 B. Wolff -Security Testing NPfIT 5

Case-Study: NPfIT
● Challenges:

● access control rules for patient-identifiable information are complex and
reflect the trade-off between patient confidentiality, usability, functional,
and legislative constraints.

● Traditional discretionary and mandatory access control and RBAC are
insufficiently expressive to capture complex policies such as Legitimate
Relationships, Sealed Envelopes or Patient Consent Management.

● access rules of such a large system comprise not only elementary rules of
data-access, but also access to security policies themselves enabling policy
management. The latter is conventionally modeled in ABAC [6–8] and
administrative RBAC [9, 10] models; A uniform modelling framework must be
able to accommodate this.

● The requirements are mandated by laws, official guidelines and ethical
positions (e. g. [11, 12]) that are prone to change.

11/25/10 B. Wolff -Security Testing NPfIT 6

Case-Study: NPfIT
● Different “Information Gouvernance Principles”

(= Policies):
● Role-Based Access Control (RBAC): NPfIT uses administrative RBAC [9] to
control who can access what system functionality. Each user is assigned
one or more User Role Profile (URP). Each URP permits the user to
perform several Activities.

● Legitimate Relationship (LR): A user is only allowed to access the data of
patients in whose care he is actually involved. Users are assigned to
hierarchically ordered workgroups that reflect the organisational
structure of a workplace.

● Patient Consent (PC): Patients can opt out in having a Summary Care
Record (SCR) at all, or to control uploads of data into the SCR. This
requires additional mechanisms to manage consent.

● Sealed Envelope (SE): The sealing concept is used to hide parts of an SCR
from users. Kinds of seals: seal, seal and lock, clinician seal.

11/25/10 B. Wolff -Security Testing NPfIT 7

Modeling Framework:
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
· A Policy: A Decision Function

(Modeling a “Policy Enforcement Point” in a System)

datatype α decision = allow α | deny α

types (α,β) policy = α β decision (* = α ⇀ ⇒ β option *)

notation α ⇛ β = (α,β) policy

11/25/10 B. Wolff -Security Testing NPfIT 8

Modeling Framework:
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
● Policy Constructors

definition ∅ ≡ λ y. None (* :: ∅ α ⇛ β *)

definition p(x+↦t) p(x ≡ Some(↦ allow t)) (* p :: α ⇛ β *)
 p(x−↦t) p(x ≡ Some(↦ deny t)) (* where p(x ↦ t) ≡

 λ y. if y = x then A else p y *)

definition (*AllowAll :: "(α β) (α ⇀ ⇒ ⇛ β)" *)

 ∀A x. pf(x) (λ x. case pf x of Some y Some(allow(y))≡ ⇒
 | None None)⇒

 (*DenyAll :: "(α β) (α ⇀ ⇒ ⇛ β)"*)
 ∀D x. pf(x) (λ x. case pf x of Some y Some(allow(y))≡ ⇒

 | None None)⇒

11/25/10 B. Wolff -Security Testing NPfIT 9

Modeling Framework:
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
– Domain, Range and Restictions on Policies (Z-like)

definition A {x. y. x = allow y}, D {x. y. x = deny y}≡ ∃ ≡ ∃

definition dom:: α β ⇀ ⇒ α set
where dom f {x. f x ≡ ≠ None}

definition ran:: α β ⇀ ⇒ β set ...

definition _ r _ :: α set ⇒ α β α β⇀ ⇒ ⇀
where S r p ≡ (λ x. if x S then p x else none)∈ (* domain restriction *)

definition _ t _ :: α β ⇀ ⇒ α set ⇒ α β⇀ ... (* range restriction *)

definition _ _ :: ⨁ α β ⇀ ⇒ α β⇀ α β ...⇒ ⇀ (* first fit override *)

11/25/10 B. Wolff -Security Testing NPfIT 10

Example: Firewalls

● Firewall Policies in UPF
– Data:

ip-address = int × int × int × int
ip-packet = ip-address × protocol × content × ip-

address

– Firewall - Policies:

policy : ip-packet ⇛ ip-packet

… this covers also Network Adress Translations
(NAT's)

11/25/10 B. Wolff -Security Testing NPfIT 11

Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition me-ftp :: ip-packet ⇛ ip-packet
where me-ftp ≡ (∅ (192,22,14,76),ftp,d,(192,22,14,76)
 +↦(192,22,14,76),ftp,d,(192,22,14,76))

11/25/10 B. Wolff -Security Testing NPfIT 12

Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition me-ftp :: ip-packet ⇛ ip-packet
where me-ftp ≡ (∅ (192,22,14,76),ftp,d,(192,22,14,76)
 +↦(192,22,14,76),ftp,d,(192,22,14,76))

– Combined Policies:

definition me-none-else:: ip-packet ⇛ ip-packet

where me-none-else ≡ me-ftp ⨁ ∀D x. x

11/25/10 B. Wolff -Security Testing NPfIT 13

Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition me-ftp :: ip-packet ⇛ ip-packet
where me-ftp ≡ (∅ (192,22,14,76),ftp,d,(192,22,14,76)
 +↦(192,22,14,76),ftp,d,(192,22,14,76))

– Combined Policies:

definition me-none-else:: ip-packet ⇛ ip-packet

where me-none-else ≡ me-ftp ⨁ ∀D x. x

11/25/10 B. Wolff -Security Testing NPfIT 14

Example: RBAC

● RBAC Policies in UPF
– Domain: UR = users × role

 RP = role × permission
– 2-Policies:

UserTab :: UR ⇛ unit,
PermTab:: permission role⇒ ⇛ unit

11/25/10 B. Wolff -Security Testing NPfIT 15

Example: RBAC

● RBAC Policies in UPF
– Domain: UR = users × role

 RP = role × permission
– 2-Policies:

UserTab :: UR ⇛ unit,
PermTab:: permission role⇒ ⇛ unit

datatype users = …
datatype roles = …
datatype permissions = …

definition rbac … RBAC (perm) = UserTab o D∨ PermTab(perm)

11/25/10 B. Wolff -Security Testing NPfIT 16

Example: RBAC

● RBAC Policies in UPF
– Domain: UR = users × role

 RP = role × permission
– 2-Policies:

UserTab :: UR ⇛ unit,
PermTab:: permission role⇒ ⇛ unit

datatype users = …
datatype roles = …
datatype permissions = …

definition rbac … RBAC (perm) = UserTab o D∨ PermTab(perm)

11/25/10 B. Wolff -Security Testing NPfIT 17

Example: RBAC

● RBAC Policies in UPF
– Domain: UR = users × role

 RP = role × permission
– 2-Policies:

UserTab :: UR ⇛ unit,
PermTab:: permission role⇒ ⇛ unit

datatype users = …
datatype roles = …
datatype permissions = …

definition rbac … RBAC (perm) = UserTab o D∨ PermTab(perm)

where o D∨ is one of the 4 policy sequential compositions

11/25/10 B. Wolff -Security Testing NPfIT 18

More on UPF

● Transition Policies
– Transition Policies: Policies involving state

 α×σ ⇛ β×σ (input α, output β)

– Higher-order Policies (Policies transforming policies)

 α×(γ⇛δ) ⇛ β×(γ⇛δ)

– Thus, ARBAC policies (policies describing who and how
(1-order) policies may be modified) can be modelled in UPF

11/25/10 B. Wolff -Security Testing NPfIT 19

More on UPF
● Parallel Composition of Policies:

– Idea: Considering policies as “transitions” in an automaton
and putting them “in parallel” similar to automata
composition.

– Essentially 4 possibilities:

definition prod_orA ::"['α 'β, 'γ 'δ] ('α×'γ 'β×'δ)" (_)↦ ↦ ⇒ ↦
where "p1 ⨂ A∨ p2 (λ(x,y). (case p1 x of ≡

Some(allow d1) (case p2 y of ⇒
 Some(allow d2) Some(allow(d1,d2))⇒
 | Some(deny d2) Some(allow(d1,d2))⇒
 | None None) ⇒
 | Some(deny d1) (case p2 y of⇒
 Some(allow d2) Some(allow(d1,d2)) ⇒
 | Some(deny d2) Some(deny (d1,d2)) ⇒
 | None None)⇒
 | None None))⇒

11/25/10 B. Wolff -Security Testing NPfIT 20

Principal Use of UPF for NPfIT

● Parallel Composition of 4 Policies + Functional:

(norm_beh, excep_beh) ∇

(legitimate_relation ⨂ A∨

 patients_consent ⨂ A∨

 sealed_envelopes ⨂ A∨

 rbac)

11/25/10 B. Wolff -Security Testing NPfIT 21

NPfIT in UPF

● Test - Specifications:
– Embedding of Transition Policies in State-Exception

Monads:

 definition policy2MON :: (ι×σ ⇛ o×σ) ⇒ ι σ ⇒ ⇀ (o ⤫ σ)
 where policy2MON p =

(λ ι σ. case p (ι,σ) of

 Some(allow(o,σ ʼ)) ⇒ Some(allow o, σʼ)

 | Some(deny(o, σʼ)) ⇒ Some(deny o, σʼ)

| None None)⇒

11/25/10 B. Wolff -Security Testing NPfIT 22

NPfIT in UPF

● Test - Specifications:
– Embedding of Transition Policies in State-Exception Monads:

 definition policy2MON :: (ι×σ ⇛ o×σ) ⇒ ι (o decision,σ)MON⇒ SE

 where policy2MON p =
(λ ι σ. case p (ι,σ) of

 Some(allow(o,σ ʼ)) ⇒ Some(allow o, σʼ)

 | Some(deny(o, σʼ)) ⇒ Some(deny o, σʼ)

| None None)⇒

11/25/10 B. Wolff -Security Testing NPfIT 23

Modeling Framework:
Unified Policy Framework (UPF)

● State-Exception Monads(f.Test-Sequences in
HOL)

 State-Exception Monads:
 type (o,σ)MONSE = σ ⇀ (o, σ)

 definition bind :: (o,σ)MONSE ⇒ (o ⇒ (o,σ)MONSE) ⇒ (o,σ)MONSE (“ _ ; _ _”)←
 where …

 definition unit :: (o ⇒ bool) ⇒ (o,σ)MONSE) (“return _ ”)
 where …

 Computation Sequences, Valid Computation Sequences,
Valid mbind-Sequences, Valid mbind-Sequences with pre-condition:

PUT(i1) ; o1 PUT(i← 2); … ; on PUT(i← n) ; result(post o1 … on)
σ0 ⊨ PUT(i1) ; o1 PUT(i← 2); … ; on PUT(i← n) ; result(post o1 … on)
σ0 ⊨ oS mbind i← S PUT ; result(post oS)
pre iS ⇒ σ0 ⊨ oS mbind i← S PUT; result(post oS)

11/25/10 B. Wolff -Security Testing NPfIT 24

NPfIT in UPF

● Example for NPfIT:

(General Pattern, formalizing an informal
requirement) :

pre iS ⟹ σ0 ⊨ oS mbind PUT (i← S); result(post oS)

11/25/10 B. Wolff -Security Testing NPfIT 25

NPfIT in UPF

● Example for NPfIT:

(General Pattern, formalizing an informal
requirement) :

⟦users iS {urp1_alice, urp2_alice, urp_john, urp_bob}; ⊆
 σ0 ⊨ os mbind i← S RBAC_Mon; return (os = X)⟧

 ⟹ σ0 ⊨ os mbind i← S PUT; return (os = X)

Our System: HOL-TestGen is ...
● ... based on HOL (Higher-order Logic):

● “Functional Programming Language with Quantifiers”
● plus definitional libraries on Sets, Lists, . . .
● can be used meta-language for HoareCalculi, Z, CSP. . .

● ... implemented on top of Isabelle
● an interactive prover implementing HOL
● the test-engineer must decide over, abstraction level,

split rules, breadth and depth of data structure exploration . . .
● providing automated and interactive

constraint-resolution techniques
● interface: ProofGeneral

● ... by thy way, a verified test-tool

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of I/O relation of the form

 C
1
(x) ⟹ . . . C

n
(x) ⟹ post x (PUT x)

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of I/O relation of the form

 C
1
(x) ⟹ . . . C

n
(x) ⟹ post x (PUT x)

● Test-Data-Selection
● constraint Solver gen_test_data
● finds x satisfying C

i
(x)

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of I/O relation of the form

 C
1
(x) ⟹ . . . C

n
(x) ⟹ post x (PUT x)

● Test-Data-Selection
● constraint solver gen_test_data
● finds x satisfying C

i
(x)

● Test-Driver Generation
● automatically compiled, drives external program

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of I/O relation of the form

 C
1
(x) ⟹ . . . C

n
(x) ⟹ post x (PUT x)

● Test-Data-Selection
● constraint solver gen_test_data
● finds x satisfying C

i
(x)

● Test-Driver Generation
● automatically compiled, drives external program

● Test Execution, Test-Documentation

TestGen: Symbolic Computations
pre x f post (x, PUT x)

case-splitter
(variables+types: regularity hypothesis
patterns: domain specific test rules)

case-solver
(simplifier, SMT-solver, ...)

case-normalizer
(CNF +)

selection-former
(inserts uniformity hypothesis)

k times ...

11/25/10 B. Wolff -Security Testing NPfIT 33

Conclusion
● HOL-TestGen used for NPfIT

was success wrt:
 superior modeling techniques
 substantial conservative libraries
 standardized interfaces to tactic

and automatic proof
 code generation
 a programming interface and genericity in design

... offering lot of machinery not worth to reinvent.

11/25/10 B. Wolff -Security Testing NPfIT 34

Conclusion
● HOL-TestGen used for NPfIT

was not successful as a project:
 we did not manage to find partners in the

NPfIT Consortium that were actually using
our test data…

 public and private awareness of security
problems apparently VERY LOW

 exploration of data space not (yet) very deep

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

